Description: Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification. The involved wffs depend on the setvar variables as follows: ph(a,b), th(a,c), ch(d,b), ta(d,c), et(a,e), ps(a,f) (Contributed by AV, 13-Mar-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2reuimp.c | |
|
2reuimp.d | |
||
2reuimp.a | |
||
2reuimp.e | |
||
2reuimp.f | |
||
Assertion | 2reuimp0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2reuimp.c | |
|
2 | 2reuimp.d | |
|
3 | 2reuimp.a | |
|
4 | 2reuimp.e | |
|
5 | 2reuimp.f | |
|
6 | 1 | reu8 | |
7 | 6 | reubii | |
8 | 3 | imbi1d | |
9 | 8 | ralbidv | |
10 | 2 9 | anbi12d | |
11 | 10 | rexbidv | |
12 | 11 | reu8 | |
13 | r19.28v | |
|
14 | equequ1 | |
|
15 | 14 | imbi2d | |
16 | 15 | ralbidv | |
17 | 4 16 | anbi12d | |
18 | 17 | cbvrexvw | |
19 | r19.23v | |
|
20 | r19.28v | |
|
21 | ancom | |
|
22 | r19.42v | |
|
23 | 21 22 | bitr4i | |
24 | equequ2 | |
|
25 | 5 24 | imbi12d | |
26 | 25 | cbvralvw | |
27 | r19.28v | |
|
28 | 27 | ex | |
29 | 28 | expcom | |
30 | 26 29 | syl7bi | |
31 | 30 | imp32 | |
32 | 31 | reximi | |
33 | 23 32 | sylbi | |
34 | 33 | ralimi | |
35 | 20 34 | syl | |
36 | 35 | ex | |
37 | 19 36 | biimtrrid | |
38 | 18 37 | sylbi | |
39 | 38 | imp | |
40 | 39 | ralimi | |
41 | 13 40 | syl | |
42 | 41 | reximi | |
43 | 12 42 | sylbi | |
44 | 7 43 | sylbi | |