Metamath Proof Explorer


Theorem 2reuimp0

Description: Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification. The involved wffs depend on the setvar variables as follows: ph(a,b), th(a,c), ch(d,b), ta(d,c), et(a,e), ps(a,f) (Contributed by AV, 13-Mar-2023)

Ref Expression
Hypotheses 2reuimp.c b=cφθ
2reuimp.d a=dφχ
2reuimp.a a=dθτ
2reuimp.e b=eφη
2reuimp.f c=fθψ
Assertion 2reuimp0 ∃!aV∃!bVφaVdVbVeVfVηχcVτb=ca=dψe=f

Proof

Step Hyp Ref Expression
1 2reuimp.c b=cφθ
2 2reuimp.d a=dφχ
3 2reuimp.a a=dθτ
4 2reuimp.e b=eφη
5 2reuimp.f c=fθψ
6 1 reu8 ∃!bVφbVφcVθb=c
7 6 reubii ∃!aV∃!bVφ∃!aVbVφcVθb=c
8 3 imbi1d a=dθb=cτb=c
9 8 ralbidv a=dcVθb=ccVτb=c
10 2 9 anbi12d a=dφcVθb=cχcVτb=c
11 10 rexbidv a=dbVφcVθb=cbVχcVτb=c
12 11 reu8 ∃!aVbVφcVθb=caVbVφcVθb=cdVbVχcVτb=ca=d
13 r19.28v bVφcVθb=cdVbVχcVτb=ca=ddVbVφcVθb=cbVχcVτb=ca=d
14 equequ1 b=eb=ce=c
15 14 imbi2d b=eθb=cθe=c
16 15 ralbidv b=ecVθb=ccVθe=c
17 4 16 anbi12d b=eφcVθb=cηcVθe=c
18 17 cbvrexvw bVφcVθb=ceVηcVθe=c
19 r19.23v bVχcVτb=ca=dbVχcVτb=ca=d
20 r19.28v eVηcVθe=cbVχcVτb=ca=dbVeVηcVθe=cχcVτb=ca=d
21 ancom eVηcVθe=cχcVτb=ca=dχcVτb=ca=deVηcVθe=c
22 r19.42v eVχcVτb=ca=dηcVθe=cχcVτb=ca=deVηcVθe=c
23 21 22 bitr4i eVηcVθe=cχcVτb=ca=deVχcVτb=ca=dηcVθe=c
24 equequ2 c=fe=ce=f
25 5 24 imbi12d c=fθe=cψe=f
26 25 cbvralvw cVθe=cfVψe=f
27 r19.28v ηχcVτb=ca=dfVψe=ffVηχcVτb=ca=dψe=f
28 27 ex ηχcVτb=ca=dfVψe=ffVηχcVτb=ca=dψe=f
29 28 expcom χcVτb=ca=dηfVψe=ffVηχcVτb=ca=dψe=f
30 26 29 syl7bi χcVτb=ca=dηcVθe=cfVηχcVτb=ca=dψe=f
31 30 imp32 χcVτb=ca=dηcVθe=cfVηχcVτb=ca=dψe=f
32 31 reximi eVχcVτb=ca=dηcVθe=ceVfVηχcVτb=ca=dψe=f
33 23 32 sylbi eVηcVθe=cχcVτb=ca=deVfVηχcVτb=ca=dψe=f
34 33 ralimi bVeVηcVθe=cχcVτb=ca=dbVeVfVηχcVτb=ca=dψe=f
35 20 34 syl eVηcVθe=cbVχcVτb=ca=dbVeVfVηχcVτb=ca=dψe=f
36 35 ex eVηcVθe=cbVχcVτb=ca=dbVeVfVηχcVτb=ca=dψe=f
37 19 36 biimtrrid eVηcVθe=cbVχcVτb=ca=dbVeVfVηχcVτb=ca=dψe=f
38 18 37 sylbi bVφcVθb=cbVχcVτb=ca=dbVeVfVηχcVτb=ca=dψe=f
39 38 imp bVφcVθb=cbVχcVτb=ca=dbVeVfVηχcVτb=ca=dψe=f
40 39 ralimi dVbVφcVθb=cbVχcVτb=ca=ddVbVeVfVηχcVτb=ca=dψe=f
41 13 40 syl bVφcVθb=cdVbVχcVτb=ca=ddVbVeVfVηχcVτb=ca=dψe=f
42 41 reximi aVbVφcVθb=cdVbVχcVτb=ca=daVdVbVeVfVηχcVτb=ca=dψe=f
43 12 42 sylbi ∃!aVbVφcVθb=caVdVbVeVfVηχcVτb=ca=dψe=f
44 7 43 sylbi ∃!aV∃!bVφaVdVbVeVfVηχcVτb=ca=dψe=f