Metamath Proof Explorer


Theorem 2sqr3nconstr

Description: Doubling the cube is an impossible construction, i.e. the cube root of 2 is not constructible with straightedge and compass. Given a cube of edge of length one, a cube of double volume would have an edge of length ( 2 ^c ( 1 / 3 ) ) , however that number is not constructible. This is the first part of Metamath 100 proof #8. (Contributed by Thierry Arnoux and Saveliy Skresanov, 26-Oct-2025)

Ref Expression
Assertion 2sqr3nconstr 2 1 3 Constr

Proof

Step Hyp Ref Expression
1 eqid deg 1 fld 𝑠 = deg 1 fld 𝑠
2 eqid fld minPoly = fld minPoly
3 2cnd 2
4 3cn 3
5 3ne0 3 0
6 4 5 reccli 1 3
7 6 a1i 1 3
8 3 7 cxpcld 2 1 3
9 eqidd fld minPoly 2 1 3 = fld minPoly 2 1 3
10 eqid fld 𝑠 = fld 𝑠
11 eqid - Poly 1 fld 𝑠 = - Poly 1 fld 𝑠
12 eqid mulGrp Poly 1 fld 𝑠 = mulGrp Poly 1 fld 𝑠
13 eqid Poly 1 fld 𝑠 = Poly 1 fld 𝑠
14 eqid algSc Poly 1 fld 𝑠 = algSc Poly 1 fld 𝑠
15 eqid var 1 fld 𝑠 = var 1 fld 𝑠
16 eqid 3 mulGrp Poly 1 fld 𝑠 var 1 fld 𝑠 - Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 2 = 3 mulGrp Poly 1 fld 𝑠 var 1 fld 𝑠 - Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 2
17 eqid 2 1 3 = 2 1 3
18 10 11 12 13 14 15 1 16 17 2 2sqr3minply 3 mulGrp Poly 1 fld 𝑠 var 1 fld 𝑠 - Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 2 = fld minPoly 2 1 3 deg 1 fld 𝑠 3 mulGrp Poly 1 fld 𝑠 var 1 fld 𝑠 - Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 2 = 3
19 18 simpli 3 mulGrp Poly 1 fld 𝑠 var 1 fld 𝑠 - Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 2 = fld minPoly 2 1 3
20 19 fveq2i deg 1 fld 𝑠 3 mulGrp Poly 1 fld 𝑠 var 1 fld 𝑠 - Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 2 = deg 1 fld 𝑠 fld minPoly 2 1 3
21 18 simpri deg 1 fld 𝑠 3 mulGrp Poly 1 fld 𝑠 var 1 fld 𝑠 - Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 2 = 3
22 20 21 eqtr3i deg 1 fld 𝑠 fld minPoly 2 1 3 = 3
23 3nn0 3 0
24 22 23 eqeltri deg 1 fld 𝑠 fld minPoly 2 1 3 0
25 24 a1i deg 1 fld 𝑠 fld minPoly 2 1 3 0
26 22 a1i n 0 deg 1 fld 𝑠 fld minPoly 2 1 3 = 3
27 3z 3
28 iddvds 3 3 3
29 27 28 ax-mp 3 3
30 simpr n 0 3 = 2 n 3 = 2 n
31 29 30 breqtrid n 0 3 = 2 n 3 2 n
32 3prm 3
33 2prm 2
34 prmdvdsexpr 3 2 n 0 3 2 n 3 = 2
35 32 33 34 mp3an12 n 0 3 2 n 3 = 2
36 35 imp n 0 3 2 n 3 = 2
37 31 36 syldan n 0 3 = 2 n 3 = 2
38 2re 2
39 2lt3 2 < 3
40 38 39 gtneii 3 2
41 40 neii ¬ 3 = 2
42 41 a1i n 0 3 = 2 n ¬ 3 = 2
43 37 42 pm2.65da n 0 ¬ 3 = 2 n
44 43 neqned n 0 3 2 n
45 26 44 eqnetrd n 0 deg 1 fld 𝑠 fld minPoly 2 1 3 2 n
46 45 adantl n 0 deg 1 fld 𝑠 fld minPoly 2 1 3 2 n
47 1 2 8 9 25 46 constrcon ¬ 2 1 3 Constr
48 47 mptru ¬ 2 1 3 Constr
49 48 nelir 2 1 3 Constr