Metamath Proof Explorer


Theorem 2wlkdlem10

Description: Lemma 10 for 3wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p P=⟨“ABC”⟩
2wlkd.f F=⟨“JK”⟩
2wlkd.s φAVBVCV
2wlkd.n φABBC
2wlkd.e φABIJBCIK
Assertion 2wlkdlem10 φk0..^FPkPk+1IFk

Proof

Step Hyp Ref Expression
1 2wlkd.p P=⟨“ABC”⟩
2 2wlkd.f F=⟨“JK”⟩
3 2wlkd.s φAVBVCV
4 2wlkd.n φABBC
5 2wlkd.e φABIJBCIK
6 1 2 3 4 5 2wlkdlem9 φABIF0BCIF1
7 1 2 3 2wlkdlem3 φP0=AP1=BP2=C
8 preq12 P0=AP1=BP0P1=AB
9 8 3adant3 P0=AP1=BP2=CP0P1=AB
10 9 sseq1d P0=AP1=BP2=CP0P1IF0ABIF0
11 preq12 P1=BP2=CP1P2=BC
12 11 3adant1 P0=AP1=BP2=CP1P2=BC
13 12 sseq1d P0=AP1=BP2=CP1P2IF1BCIF1
14 10 13 anbi12d P0=AP1=BP2=CP0P1IF0P1P2IF1ABIF0BCIF1
15 7 14 syl φP0P1IF0P1P2IF1ABIF0BCIF1
16 6 15 mpbird φP0P1IF0P1P2IF1
17 1 2 2wlkdlem2 0..^F=01
18 17 raleqi k0..^FPkPk+1IFkk01PkPk+1IFk
19 c0ex 0V
20 1ex 1V
21 fveq2 k=0Pk=P0
22 fv0p1e1 k=0Pk+1=P1
23 21 22 preq12d k=0PkPk+1=P0P1
24 2fveq3 k=0IFk=IF0
25 23 24 sseq12d k=0PkPk+1IFkP0P1IF0
26 fveq2 k=1Pk=P1
27 oveq1 k=1k+1=1+1
28 1p1e2 1+1=2
29 27 28 eqtrdi k=1k+1=2
30 29 fveq2d k=1Pk+1=P2
31 26 30 preq12d k=1PkPk+1=P1P2
32 2fveq3 k=1IFk=IF1
33 31 32 sseq12d k=1PkPk+1IFkP1P2IF1
34 19 20 25 33 ralpr k01PkPk+1IFkP0P1IF0P1P2IF1
35 18 34 bitri k0..^FPkPk+1IFkP0P1IF0P1P2IF1
36 16 35 sylibr φk0..^FPkPk+1IFk