Metamath Proof Explorer


Theorem 3cubes

Description: Every rational number is a sum of three rational cubes. See S. Ryley, The Ladies' Diary 122 (1825), 35. (Contributed by Igor Ieskov, 22-Jan-2024)

Ref Expression
Assertion 3cubes AabcA=a3+b3+c3

Proof

Step Hyp Ref Expression
1 3nn 3
2 1 a1i ¬333
3 3nn0 30
4 3 a1i ¬3330
5 2 4 nnexpcld ¬3333
6 5 pm2.18i 33
7 nnq 3333
8 6 7 mp1i A33
9 qexpcl A30A3
10 3 9 mpan2 AA3
11 qmulcl 33A333A3
12 8 10 11 syl2anc A33A3
13 1nn 1
14 nnq 11
15 13 14 ax-mp 1
16 qsubcl 33A3133A31
17 12 15 16 sylancl A33A31
18 qsqcl AA2
19 qmulcl 33A233A2
20 8 18 19 syl2anc A33A2
21 nnq 33
22 1 21 ax-mp 3
23 qsqcl 332
24 22 23 mp1i A32
25 qmulcl 32A32A
26 24 25 mpancom A32A
27 qaddcl 33A232A33A2+32A
28 20 26 27 syl2anc A33A2+32A
29 qaddcl 33A2+32A333A2+32A+3
30 28 22 29 sylancl A33A2+32A+3
31 id AA
32 31 3cubeslem2 A¬33A2+32A+3=0
33 32 neqned A33A2+32A+30
34 qdivcl 33A3133A2+32A+333A2+32A+3033A3133A2+32A+3
35 17 30 33 34 syl3anc A33A3133A2+32A+3
36 qnegcl 33A333A3
37 12 36 syl A33A3
38 qaddcl 33A332A-33A3+32A
39 37 26 38 syl2anc A-33A3+32A
40 qaddcl -33A3+32A133A3+32A+1
41 39 15 40 sylancl A33A3+32A+1
42 qdivcl 33A3+32A+133A2+32A+333A2+32A+3033A3+32A+133A2+32A+3
43 41 30 33 42 syl3anc A33A3+32A+133A2+32A+3
44 qdivcl 33A2+32A33A2+32A+333A2+32A+3033A2+32A33A2+32A+3
45 28 30 33 44 syl3anc A33A2+32A33A2+32A+3
46 31 3cubeslem4 AA=33A3133A2+32A+33+33A3+32A+133A2+32A+33+33A2+32A33A2+32A+33
47 oveq1 a=33A3133A2+32A+3a3=33A3133A2+32A+33
48 47 oveq1d a=33A3133A2+32A+3a3+b3=33A3133A2+32A+33+b3
49 48 oveq1d a=33A3133A2+32A+3a3+b3+c3=33A3133A2+32A+33+b3+c3
50 49 eqeq2d a=33A3133A2+32A+3A=a3+b3+c3A=33A3133A2+32A+33+b3+c3
51 oveq1 b=33A3+32A+133A2+32A+3b3=33A3+32A+133A2+32A+33
52 51 oveq2d b=33A3+32A+133A2+32A+333A3133A2+32A+33+b3=33A3133A2+32A+33+33A3+32A+133A2+32A+33
53 52 oveq1d b=33A3+32A+133A2+32A+333A3133A2+32A+33+b3+c3=33A3133A2+32A+33+33A3+32A+133A2+32A+33+c3
54 53 eqeq2d b=33A3+32A+133A2+32A+3A=33A3133A2+32A+33+b3+c3A=33A3133A2+32A+33+33A3+32A+133A2+32A+33+c3
55 oveq1 c=33A2+32A33A2+32A+3c3=33A2+32A33A2+32A+33
56 55 oveq2d c=33A2+32A33A2+32A+333A3133A2+32A+33+33A3+32A+133A2+32A+33+c3=33A3133A2+32A+33+33A3+32A+133A2+32A+33+33A2+32A33A2+32A+33
57 56 eqeq2d c=33A2+32A33A2+32A+3A=33A3133A2+32A+33+33A3+32A+133A2+32A+33+c3A=33A3133A2+32A+33+33A3+32A+133A2+32A+33+33A2+32A33A2+32A+33
58 50 54 57 rspc3ev 33A3133A2+32A+333A3+32A+133A2+32A+333A2+32A33A2+32A+3A=33A3133A2+32A+33+33A3+32A+133A2+32A+33+33A2+32A33A2+32A+33abcA=a3+b3+c3
59 35 43 45 46 58 syl31anc AabcA=a3+b3+c3
60 3anass abcabc
61 qexpcl a30a3
62 3 61 mpan2 aa3
63 simprl abcb
64 qexpcl b30b3
65 63 3 64 sylancl abcb3
66 qaddcl a3b3a3+b3
67 62 65 66 syl2an2r abca3+b3
68 simprr abcc
69 qexpcl c30c3
70 68 3 69 sylancl abcc3
71 qaddcl a3+b3c3a3+b3+c3
72 67 70 71 syl2anc abca3+b3+c3
73 eleq1a a3+b3+c3A=a3+b3+c3A
74 72 73 syl abcA=a3+b3+c3A
75 74 a1i abcA=a3+b3+c3A
76 60 75 biimtrid abcA=a3+b3+c3A
77 76 rexlimdv3d abcA=a3+b3+c3A
78 77 mptru abcA=a3+b3+c3A
79 59 78 impbii AabcA=a3+b3+c3