Metamath Proof Explorer


Theorem 3dimlem3OLDN

Description: Lemma for 3dim1 . (Contributed by NM, 25-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses 3dim0.j ˙=joinK
3dim0.l ˙=K
3dim0.a A=AtomsK
Assertion 3dimlem3OLDN KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SPQ¬R˙P˙Q¬T˙P˙Q˙R

Proof

Step Hyp Ref Expression
1 3dim0.j ˙=joinK
2 3dim0.l ˙=K
3 3dim0.a A=AtomsK
4 simpr1 KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SPQ
5 simpr2 KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙S¬P˙Q˙R
6 simpl11 KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SKHL
7 simpl2l KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SRA
8 simpl12 KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SPA
9 simpl13 KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SQA
10 simpl3l KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SQR
11 10 necomd KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SRQ
12 2 1 3 hlatexch2 KHLRAPAQARQR˙P˙QP˙R˙Q
13 6 7 8 9 11 12 syl131anc KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SR˙P˙QP˙R˙Q
14 1 3 hlatjcom KHLQARAQ˙R=R˙Q
15 6 9 7 14 syl3anc KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SQ˙R=R˙Q
16 15 breq2d KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SP˙Q˙RP˙R˙Q
17 13 16 sylibrd KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SR˙P˙QP˙Q˙R
18 5 17 mtod KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙S¬R˙P˙Q
19 simpl3r KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙S¬T˙Q˙R˙S
20 hllat KHLKLat
21 6 20 syl KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SKLat
22 eqid BaseK=BaseK
23 22 3 atbase QAQBaseK
24 9 23 syl KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SQBaseK
25 22 3 atbase RARBaseK
26 7 25 syl KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SRBaseK
27 22 3 atbase PAPBaseK
28 8 27 syl KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SPBaseK
29 22 1 latjrot KLatQBaseKRBaseKPBaseKQ˙R˙P=P˙Q˙R
30 21 24 26 28 29 syl13anc KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SQ˙R˙P=P˙Q˙R
31 simpr3 KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SP˙Q˙R˙S
32 simpl2r KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SSA
33 22 1 3 hlatjcl KHLQARAQ˙RBaseK
34 6 9 7 33 syl3anc KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SQ˙RBaseK
35 22 2 1 3 hlexchb1 KHLPASAQ˙RBaseK¬P˙Q˙RP˙Q˙R˙SQ˙R˙P=Q˙R˙S
36 6 8 32 34 5 35 syl131anc KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SP˙Q˙R˙SQ˙R˙P=Q˙R˙S
37 31 36 mpbid KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SQ˙R˙P=Q˙R˙S
38 30 37 eqtr3d KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SP˙Q˙R=Q˙R˙S
39 38 breq2d KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙ST˙P˙Q˙RT˙Q˙R˙S
40 19 39 mtbird KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙S¬T˙P˙Q˙R
41 4 18 40 3jca KHLPAQARASAQR¬T˙Q˙R˙SPQ¬P˙Q˙RP˙Q˙R˙SPQ¬R˙P˙Q¬T˙P˙Q˙R