Description: Lemma for 3dim1 . (Contributed by NM, 25-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3dim0.j | |
|
3dim0.l | |
||
3dim0.a | |
||
Assertion | 3dimlem3OLDN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3dim0.j | |
|
2 | 3dim0.l | |
|
3 | 3dim0.a | |
|
4 | simpr1 | |
|
5 | simpr2 | |
|
6 | simpl11 | |
|
7 | simpl2l | |
|
8 | simpl12 | |
|
9 | simpl13 | |
|
10 | simpl3l | |
|
11 | 10 | necomd | |
12 | 2 1 3 | hlatexch2 | |
13 | 6 7 8 9 11 12 | syl131anc | |
14 | 1 3 | hlatjcom | |
15 | 6 9 7 14 | syl3anc | |
16 | 15 | breq2d | |
17 | 13 16 | sylibrd | |
18 | 5 17 | mtod | |
19 | simpl3r | |
|
20 | hllat | |
|
21 | 6 20 | syl | |
22 | eqid | |
|
23 | 22 3 | atbase | |
24 | 9 23 | syl | |
25 | 22 3 | atbase | |
26 | 7 25 | syl | |
27 | 22 3 | atbase | |
28 | 8 27 | syl | |
29 | 22 1 | latjrot | |
30 | 21 24 26 28 29 | syl13anc | |
31 | simpr3 | |
|
32 | simpl2r | |
|
33 | 22 1 3 | hlatjcl | |
34 | 6 9 7 33 | syl3anc | |
35 | 22 2 1 3 | hlexchb1 | |
36 | 6 8 32 34 5 35 | syl131anc | |
37 | 31 36 | mpbid | |
38 | 30 37 | eqtr3d | |
39 | 38 | breq2d | |
40 | 19 39 | mtbird | |
41 | 4 18 40 | 3jca | |