Metamath Proof Explorer


Theorem 4atlem12b

Description: Lemma for 4at . Substitute T for P (cont.). (Contributed by NM, 11-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙=K
4at.j ˙=joinK
4at.a A=AtomsK
Assertion 4atlem12b KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WP˙Q˙R˙S=T˙U˙V˙W

Proof

Step Hyp Ref Expression
1 4at.l ˙=K
2 4at.j ˙=joinK
3 4at.a A=AtomsK
4 simp11 KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WKHLPAQA
5 simp121 KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WRA
6 simp122 KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WSA
7 5 6 jca KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WRASA
8 simp13 KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WUAVAWA
9 4 7 8 3jca KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WKHLPAQARASAUAVAWA
10 simp2l KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WPQ¬R˙P˙Q¬S˙P˙Q˙R
11 9 10 jca KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WKHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R
12 simp3lr KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WQ˙T˙U˙V˙W
13 simp3rl KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WR˙T˙U˙V˙W
14 simp3rr KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WS˙T˙U˙V˙W
15 simp111 KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WKHL
16 15 hllatd KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WKLat
17 eqid BaseK=BaseK
18 17 3 atbase RARBaseK
19 5 18 syl KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WRBaseK
20 17 3 atbase SASBaseK
21 6 20 syl KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WSBaseK
22 simp123 KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WTA
23 simp131 KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WUA
24 17 2 3 hlatjcl KHLTAUAT˙UBaseK
25 15 22 23 24 syl3anc KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WT˙UBaseK
26 simp132 KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WVA
27 simp133 KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WWA
28 17 2 3 hlatjcl KHLVAWAV˙WBaseK
29 15 26 27 28 syl3anc KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WV˙WBaseK
30 17 2 latjcl KLatT˙UBaseKV˙WBaseKT˙U˙V˙WBaseK
31 16 25 29 30 syl3anc KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WT˙U˙V˙WBaseK
32 17 1 2 latjle12 KLatRBaseKSBaseKT˙U˙V˙WBaseKR˙T˙U˙V˙WS˙T˙U˙V˙WR˙S˙T˙U˙V˙W
33 16 19 21 31 32 syl13anc KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WR˙S˙T˙U˙V˙W
34 13 14 33 mpbi2and KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WR˙S˙T˙U˙V˙W
35 simp113 KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WQA
36 17 3 atbase QAQBaseK
37 35 36 syl KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WQBaseK
38 17 2 3 hlatjcl KHLRASAR˙SBaseK
39 15 5 6 38 syl3anc KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WR˙SBaseK
40 17 1 2 latjle12 KLatQBaseKR˙SBaseKT˙U˙V˙WBaseKQ˙T˙U˙V˙WR˙S˙T˙U˙V˙WQ˙R˙S˙T˙U˙V˙W
41 16 37 39 31 40 syl13anc KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WQ˙T˙U˙V˙WR˙S˙T˙U˙V˙WQ˙R˙S˙T˙U˙V˙W
42 12 34 41 mpbi2and KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WQ˙R˙S˙T˙U˙V˙W
43 simp3ll KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WP˙T˙U˙V˙W
44 simp112 KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WPA
45 simp2r KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙W¬P˙U˙V˙W
46 1 2 3 4atlem12a KHLPATAUAVAWA¬P˙U˙V˙WP˙T˙U˙V˙WP˙U˙V˙W=T˙U˙V˙W
47 15 44 22 8 45 46 syl311anc KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WP˙T˙U˙V˙WP˙U˙V˙W=T˙U˙V˙W
48 43 47 mpbid KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WP˙U˙V˙W=T˙U˙V˙W
49 42 48 breqtrrd KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WQ˙R˙S˙P˙U˙V˙W
50 1 2 3 4atlem11 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙R˙S˙P˙U˙V˙WP˙Q˙R˙S=P˙U˙V˙W
51 11 49 50 sylc KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WP˙Q˙R˙S=P˙U˙V˙W
52 51 48 eqtrd KHLPAQARASATAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙U˙V˙WP˙T˙U˙V˙WQ˙T˙U˙V˙WR˙T˙U˙V˙WS˙T˙U˙V˙WP˙Q˙R˙S=T˙U˙V˙W