Metamath Proof Explorer


Theorem 4atlem11

Description: Lemma for 4at . Combine all three possible cases. (Contributed by NM, 10-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙=K
4at.j ˙=joinK
4at.a A=AtomsK
Assertion 4atlem11 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙R˙S˙P˙U˙V˙WP˙Q˙R˙S=P˙U˙V˙W

Proof

Step Hyp Ref Expression
1 4at.l ˙=K
2 4at.j ˙=joinK
3 4at.a A=AtomsK
4 3anass Q˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙W
5 simpl11 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RKHL
6 5 hllatd KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RKLat
7 simpl2l KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RRA
8 eqid BaseK=BaseK
9 8 3 atbase RARBaseK
10 7 9 syl KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RRBaseK
11 simpl2r KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RSA
12 8 3 atbase SASBaseK
13 11 12 syl KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RSBaseK
14 simpl12 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RPA
15 simpl31 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RUA
16 8 2 3 hlatjcl KHLPAUAP˙UBaseK
17 5 14 15 16 syl3anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙UBaseK
18 simpl32 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RVA
19 simpl33 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RWA
20 8 2 3 hlatjcl KHLVAWAV˙WBaseK
21 5 18 19 20 syl3anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RV˙WBaseK
22 8 2 latjcl KLatP˙UBaseKV˙WBaseKP˙U˙V˙WBaseK
23 6 17 21 22 syl3anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙U˙V˙WBaseK
24 8 1 2 latjle12 KLatRBaseKSBaseKP˙U˙V˙WBaseKR˙P˙U˙V˙WS˙P˙U˙V˙WR˙S˙P˙U˙V˙W
25 6 10 13 23 24 syl13anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RR˙P˙U˙V˙WS˙P˙U˙V˙WR˙S˙P˙U˙V˙W
26 25 anbi2d KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WQ˙P˙U˙V˙WR˙S˙P˙U˙V˙W
27 4 26 bitrid KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WQ˙P˙U˙V˙WR˙S˙P˙U˙V˙W
28 simpl13 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQA
29 8 3 atbase QAQBaseK
30 28 29 syl KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQBaseK
31 8 2 3 hlatjcl KHLRASAR˙SBaseK
32 5 7 11 31 syl3anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RR˙SBaseK
33 8 1 2 latjle12 KLatQBaseKR˙SBaseKP˙U˙V˙WBaseKQ˙P˙U˙V˙WR˙S˙P˙U˙V˙WQ˙R˙S˙P˙U˙V˙W
34 6 30 32 23 33 syl13anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙P˙U˙V˙WR˙S˙P˙U˙V˙WQ˙R˙S˙P˙U˙V˙W
35 27 34 bitrd KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WQ˙R˙S˙P˙U˙V˙W
36 simpl1 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RKHLPAQA
37 simpl2 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RRASA
38 18 19 jca KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RVAWA
39 simpr KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RPQ¬R˙P˙Q¬S˙P˙Q˙R
40 1 2 3 4atlem3a KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙V˙W¬R˙P˙V˙W¬S˙P˙V˙W
41 36 37 38 39 40 syl31anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙V˙W¬R˙P˙V˙W¬S˙P˙V˙W
42 simp1l KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WKHLPAQARASAUAVAWA
43 simp1r KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WPQ¬R˙P˙Q¬S˙P˙Q˙R
44 simp2 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙W¬Q˙P˙V˙W
45 simp3 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙W
46 1 2 3 4atlem11b KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WP˙Q˙R˙S=P˙U˙V˙W
47 42 43 44 45 46 syl121anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WP˙Q˙R˙S=P˙U˙V˙W
48 47 3exp KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WP˙Q˙R˙S=P˙U˙V˙W
49 5 3ad2ant1 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WKHL
50 14 3ad2ant1 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WPA
51 28 3ad2ant1 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WQA
52 7 3ad2ant1 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WRA
53 11 3ad2ant1 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WSA
54 2 3 hlatj4 KHLPAQARASAP˙Q˙R˙S=P˙R˙Q˙S
55 49 50 51 52 53 54 syl122anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WP˙Q˙R˙S=P˙R˙Q˙S
56 49 50 52 3jca KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WKHLPARA
57 51 53 jca KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WQASA
58 simp1l3 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WUAVAWA
59 simp1r2 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙W¬R˙P˙Q
60 1 2 3 4atlem0be KHLPAQARA¬R˙P˙QPR
61 49 50 51 52 59 60 syl131anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WPR
62 simp1r1 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WPQ
63 1 2 3 4atlem0ae KHLPAQARAPQ¬R˙P˙Q¬Q˙P˙R
64 49 50 51 52 62 59 63 syl132anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙W¬Q˙P˙R
65 simp1r3 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙W¬S˙P˙Q˙R
66 2 3 hlatj32 KHLPAQARAP˙Q˙R=P˙R˙Q
67 49 50 51 52 66 syl13anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WP˙Q˙R=P˙R˙Q
68 67 breq2d KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WS˙P˙Q˙RS˙P˙R˙Q
69 65 68 mtbid KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙W¬S˙P˙R˙Q
70 61 64 69 3jca KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WPR¬Q˙P˙R¬S˙P˙R˙Q
71 simp2 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙W¬R˙P˙V˙W
72 simp32 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WR˙P˙U˙V˙W
73 simp31 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WQ˙P˙U˙V˙W
74 simp33 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WS˙P˙U˙V˙W
75 1 2 3 4atlem11b KHLPARAQASAUAVAWAPR¬Q˙P˙R¬S˙P˙R˙Q¬R˙P˙V˙WR˙P˙U˙V˙WQ˙P˙U˙V˙WS˙P˙U˙V˙WP˙R˙Q˙S=P˙U˙V˙W
76 56 57 58 70 71 72 73 74 75 syl323anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WP˙R˙Q˙S=P˙U˙V˙W
77 55 76 eqtrd KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WP˙Q˙R˙S=P˙U˙V˙W
78 77 3exp KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WP˙Q˙R˙S=P˙U˙V˙W
79 8 3 atbase PAPBaseK
80 14 79 syl KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RPBaseK
81 8 2 latj4rot KLatPBaseKQBaseKRBaseKSBaseKP˙Q˙R˙S=S˙P˙Q˙R
82 6 80 30 10 13 81 syl122anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S=S˙P˙Q˙R
83 2 3 hlatjcom KHLSAPAS˙P=P˙S
84 5 11 14 83 syl3anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RS˙P=P˙S
85 84 oveq1d KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RS˙P˙Q˙R=P˙S˙Q˙R
86 82 85 eqtrd KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S=P˙S˙Q˙R
87 86 3ad2ant1 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WP˙Q˙R˙S=P˙S˙Q˙R
88 5 14 11 3jca KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RKHLPASA
89 28 7 jca KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQARA
90 simpl3 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RUAVAWA
91 88 89 90 3jca KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RKHLPASAQARAUAVAWA
92 91 3ad2ant1 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WKHLPASAQARAUAVAWA
93 1 2 3 4noncolr1 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RSP¬Q˙S˙P¬R˙S˙P˙Q
94 36 37 39 93 syl3anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RSP¬Q˙S˙P¬R˙S˙P˙Q
95 necom SPPS
96 95 a1i KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RSPPS
97 84 breq2d KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙S˙PQ˙P˙S
98 97 notbid KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙S˙P¬Q˙P˙S
99 84 oveq1d KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RS˙P˙Q=P˙S˙Q
100 99 breq2d KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RR˙S˙P˙QR˙P˙S˙Q
101 100 notbid KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙S˙P˙Q¬R˙P˙S˙Q
102 96 98 101 3anbi123d KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RSP¬Q˙S˙P¬R˙S˙P˙QPS¬Q˙P˙S¬R˙P˙S˙Q
103 94 102 mpbid KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RPS¬Q˙P˙S¬R˙P˙S˙Q
104 103 3ad2ant1 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WPS¬Q˙P˙S¬R˙P˙S˙Q
105 simp2 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙W¬S˙P˙V˙W
106 simpr3 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WS˙P˙U˙V˙W
107 simpr1 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WQ˙P˙U˙V˙W
108 simpr2 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WR˙P˙U˙V˙W
109 106 107 108 3jca KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WS˙P˙U˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙W
110 109 3adant2 KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WS˙P˙U˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙W
111 1 2 3 4atlem11b KHLPASAQARAUAVAWAPS¬Q˙P˙S¬R˙P˙S˙Q¬S˙P˙V˙WS˙P˙U˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WP˙S˙Q˙R=P˙U˙V˙W
112 92 104 105 110 111 syl121anc KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WP˙S˙Q˙R=P˙U˙V˙W
113 87 112 eqtrd KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WP˙Q˙R˙S=P˙U˙V˙W
114 113 3exp KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WP˙Q˙R˙S=P˙U˙V˙W
115 48 78 114 3jaod KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬Q˙P˙V˙W¬R˙P˙V˙W¬S˙P˙V˙WQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WP˙Q˙R˙S=P˙U˙V˙W
116 41 115 mpd KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙P˙U˙V˙WR˙P˙U˙V˙WS˙P˙U˙V˙WP˙Q˙R˙S=P˙U˙V˙W
117 35 116 sylbird KHLPAQARASAUAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙R˙S˙P˙U˙V˙WP˙Q˙R˙S=P˙U˙V˙W