Metamath Proof Explorer


Theorem 4atlem3

Description: Lemma for 4at . Break inequality into 4 cases. (Contributed by NM, 8-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙=K
4at.j ˙=joinK
4at.a A=AtomsK
Assertion 4atlem3 KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙T˙U˙V¬Q˙T˙U˙V¬R˙T˙U˙V¬S˙T˙U˙V

Proof

Step Hyp Ref Expression
1 4at.l ˙=K
2 4at.j ˙=joinK
3 4at.a A=AtomsK
4 simpl11 KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RKHL
5 simpl1 KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RKHLPAQA
6 simpl21 KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RRA
7 simpl22 KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RSA
8 simpr KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RPQ¬R˙P˙Q¬S˙P˙Q˙R
9 eqid LVolsK=LVolsK
10 1 2 3 9 lvoli2 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙SLVolsK
11 5 6 7 8 10 syl121anc KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙SLVolsK
12 simpl23 KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RTA
13 simpl3l KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RUA
14 simpl3r KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RVA
15 1 2 3 9 lvolnle3at KHLP˙Q˙R˙SLVolsKTAUAVA¬P˙Q˙R˙S˙T˙U˙V
16 4 11 12 13 14 15 syl23anc KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙Q˙R˙S˙T˙U˙V
17 4 hllatd KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RKLat
18 eqid BaseK=BaseK
19 18 2 3 hlatjcl KHLPAQAP˙QBaseK
20 5 19 syl KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙QBaseK
21 18 2 3 hlatjcl KHLRASAR˙SBaseK
22 4 6 7 21 syl3anc KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RR˙SBaseK
23 18 2 3 hlatjcl KHLTAUAT˙UBaseK
24 4 12 13 23 syl3anc KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RT˙UBaseK
25 18 3 atbase VAVBaseK
26 14 25 syl KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RVBaseK
27 18 2 latjcl KLatT˙UBaseKVBaseKT˙U˙VBaseK
28 17 24 26 27 syl3anc KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RT˙U˙VBaseK
29 18 1 2 latjle12 KLatP˙QBaseKR˙SBaseKT˙U˙VBaseKP˙Q˙T˙U˙VR˙S˙T˙U˙VP˙Q˙R˙S˙T˙U˙V
30 17 20 22 28 29 syl13anc KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙T˙U˙VR˙S˙T˙U˙VP˙Q˙R˙S˙T˙U˙V
31 simpl12 KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RPA
32 18 3 atbase PAPBaseK
33 31 32 syl KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RPBaseK
34 simpl13 KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RQA
35 18 3 atbase QAQBaseK
36 34 35 syl KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RQBaseK
37 18 1 2 latjle12 KLatPBaseKQBaseKT˙U˙VBaseKP˙T˙U˙VQ˙T˙U˙VP˙Q˙T˙U˙V
38 17 33 36 28 37 syl13anc KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙T˙U˙VQ˙T˙U˙VP˙Q˙T˙U˙V
39 18 3 atbase RARBaseK
40 6 39 syl KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RRBaseK
41 18 3 atbase SASBaseK
42 7 41 syl KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RSBaseK
43 18 1 2 latjle12 KLatRBaseKSBaseKT˙U˙VBaseKR˙T˙U˙VS˙T˙U˙VR˙S˙T˙U˙V
44 17 40 42 28 43 syl13anc KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RR˙T˙U˙VS˙T˙U˙VR˙S˙T˙U˙V
45 38 44 anbi12d KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙T˙U˙VQ˙T˙U˙VR˙T˙U˙VS˙T˙U˙VP˙Q˙T˙U˙VR˙S˙T˙U˙V
46 18 2 latjass KLatP˙QBaseKRBaseKSBaseKP˙Q˙R˙S=P˙Q˙R˙S
47 17 20 40 42 46 syl13anc KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S=P˙Q˙R˙S
48 47 breq1d KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙S˙T˙U˙VP˙Q˙R˙S˙T˙U˙V
49 30 45 48 3bitr4d KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙T˙U˙VQ˙T˙U˙VR˙T˙U˙VS˙T˙U˙VP˙Q˙R˙S˙T˙U˙V
50 16 49 mtbird KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙T˙U˙VQ˙T˙U˙VR˙T˙U˙VS˙T˙U˙V
51 ianor ¬P˙T˙U˙VQ˙T˙U˙VR˙T˙U˙VS˙T˙U˙V¬P˙T˙U˙VQ˙T˙U˙V¬R˙T˙U˙VS˙T˙U˙V
52 ianor ¬P˙T˙U˙VQ˙T˙U˙V¬P˙T˙U˙V¬Q˙T˙U˙V
53 ianor ¬R˙T˙U˙VS˙T˙U˙V¬R˙T˙U˙V¬S˙T˙U˙V
54 52 53 orbi12i ¬P˙T˙U˙VQ˙T˙U˙V¬R˙T˙U˙VS˙T˙U˙V¬P˙T˙U˙V¬Q˙T˙U˙V¬R˙T˙U˙V¬S˙T˙U˙V
55 51 54 bitri ¬P˙T˙U˙VQ˙T˙U˙VR˙T˙U˙VS˙T˙U˙V¬P˙T˙U˙V¬Q˙T˙U˙V¬R˙T˙U˙V¬S˙T˙U˙V
56 50 55 sylib KHLPAQARASATAUAVAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙T˙U˙V¬Q˙T˙U˙V¬R˙T˙U˙V¬S˙T˙U˙V