Metamath Proof Explorer


Theorem absmulgcd

Description: Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in ApostolNT p. 16. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion absmulgcd K M N K M gcd K N = K M gcd N

Proof

Step Hyp Ref Expression
1 gcdcl M N M gcd N 0
2 nn0re M gcd N 0 M gcd N
3 nn0ge0 M gcd N 0 0 M gcd N
4 2 3 absidd M gcd N 0 M gcd N = M gcd N
5 1 4 syl M N M gcd N = M gcd N
6 5 oveq2d M N K M gcd N = K M gcd N
7 6 3adant1 K M N K M gcd N = K M gcd N
8 zcn K K
9 1 nn0cnd M N M gcd N
10 absmul K M gcd N K M gcd N = K M gcd N
11 8 9 10 syl2an K M N K M gcd N = K M gcd N
12 11 3impb K M N K M gcd N = K M gcd N
13 zcn M M
14 zcn N N
15 absmul K M K M = K M
16 absmul K N K N = K N
17 15 16 oveqan12d K M K N K M gcd K N = K M gcd K N
18 17 3impdi K M N K M gcd K N = K M gcd K N
19 8 13 14 18 syl3an K M N K M gcd K N = K M gcd K N
20 zmulcl K M K M
21 zmulcl K N K N
22 gcdabs K M K N K M gcd K N = K M gcd K N
23 20 21 22 syl2an K M K N K M gcd K N = K M gcd K N
24 23 3impdi K M N K M gcd K N = K M gcd K N
25 nn0abscl K K 0
26 zabscl M M
27 zabscl N N
28 mulgcd K 0 M N K M gcd K N = K M gcd N
29 25 26 27 28 syl3an K M N K M gcd K N = K M gcd N
30 19 24 29 3eqtr3d K M N K M gcd K N = K M gcd N
31 gcdabs M N M gcd N = M gcd N
32 31 3adant1 K M N M gcd N = M gcd N
33 32 oveq2d K M N K M gcd N = K M gcd N
34 30 33 eqtrd K M N K M gcd K N = K M gcd N
35 7 12 34 3eqtr4rd K M N K M gcd K N = K M gcd N