Metamath Proof Explorer


Theorem absmulgcd

Description: Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in ApostolNT p. 16. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion absmulgcd KMNK MgcdK N=KMgcdN

Proof

Step Hyp Ref Expression
1 gcdcl MNMgcdN0
2 nn0re MgcdN0MgcdN
3 nn0ge0 MgcdN00MgcdN
4 2 3 absidd MgcdN0MgcdN=MgcdN
5 1 4 syl MNMgcdN=MgcdN
6 5 oveq2d MNKMgcdN=KMgcdN
7 6 3adant1 KMNKMgcdN=KMgcdN
8 zcn KK
9 1 nn0cnd MNMgcdN
10 absmul KMgcdNKMgcdN=KMgcdN
11 8 9 10 syl2an KMNKMgcdN=KMgcdN
12 11 3impb KMNKMgcdN=KMgcdN
13 zcn MM
14 zcn NN
15 absmul KMK M=KM
16 absmul KNK N=KN
17 15 16 oveqan12d KMKNK MgcdK N=KMgcdKN
18 17 3impdi KMNK MgcdK N=KMgcdKN
19 8 13 14 18 syl3an KMNK MgcdK N=KMgcdKN
20 zmulcl KMK M
21 zmulcl KNK N
22 gcdabs K MK NK MgcdK N=K MgcdK N
23 20 21 22 syl2an KMKNK MgcdK N=K MgcdK N
24 23 3impdi KMNK MgcdK N=K MgcdK N
25 nn0abscl KK0
26 zabscl MM
27 zabscl NN
28 mulgcd K0MNKMgcdKN=KMgcdN
29 25 26 27 28 syl3an KMNKMgcdKN=KMgcdN
30 19 24 29 3eqtr3d KMNK MgcdK N=KMgcdN
31 gcdabs MNMgcdN=MgcdN
32 31 3adant1 KMNMgcdN=MgcdN
33 32 oveq2d KMNKMgcdN=KMgcdN
34 30 33 eqtrd KMNK MgcdK N=KMgcdN
35 7 12 34 3eqtr4rd KMNK MgcdK N=KMgcdN