| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcdcl |
|
| 2 |
|
nn0re |
|
| 3 |
|
nn0ge0 |
|
| 4 |
2 3
|
absidd |
|
| 5 |
1 4
|
syl |
|
| 6 |
5
|
oveq2d |
|
| 7 |
6
|
3adant1 |
|
| 8 |
|
zcn |
|
| 9 |
1
|
nn0cnd |
|
| 10 |
|
absmul |
|
| 11 |
8 9 10
|
syl2an |
|
| 12 |
11
|
3impb |
|
| 13 |
|
zcn |
|
| 14 |
|
zcn |
|
| 15 |
|
absmul |
|
| 16 |
|
absmul |
|
| 17 |
15 16
|
oveqan12d |
|
| 18 |
17
|
3impdi |
|
| 19 |
8 13 14 18
|
syl3an |
|
| 20 |
|
zmulcl |
|
| 21 |
|
zmulcl |
|
| 22 |
|
gcdabs |
|
| 23 |
20 21 22
|
syl2an |
|
| 24 |
23
|
3impdi |
|
| 25 |
|
nn0abscl |
|
| 26 |
|
zabscl |
|
| 27 |
|
zabscl |
|
| 28 |
|
mulgcd |
|
| 29 |
25 26 27 28
|
syl3an |
|
| 30 |
19 24 29
|
3eqtr3d |
|
| 31 |
|
gcdabs |
|
| 32 |
31
|
3adant1 |
|
| 33 |
32
|
oveq2d |
|
| 34 |
30 33
|
eqtrd |
|
| 35 |
7 12 34
|
3eqtr4rd |
|