Description: Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in ApostolNT p. 16. (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | absmulgcd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdcl | |
|
2 | nn0re | |
|
3 | nn0ge0 | |
|
4 | 2 3 | absidd | |
5 | 1 4 | syl | |
6 | 5 | oveq2d | |
7 | 6 | 3adant1 | |
8 | zcn | |
|
9 | 1 | nn0cnd | |
10 | absmul | |
|
11 | 8 9 10 | syl2an | |
12 | 11 | 3impb | |
13 | zcn | |
|
14 | zcn | |
|
15 | absmul | |
|
16 | absmul | |
|
17 | 15 16 | oveqan12d | |
18 | 17 | 3impdi | |
19 | 8 13 14 18 | syl3an | |
20 | zmulcl | |
|
21 | zmulcl | |
|
22 | gcdabs | |
|
23 | 20 21 22 | syl2an | |
24 | 23 | 3impdi | |
25 | nn0abscl | |
|
26 | zabscl | |
|
27 | zabscl | |
|
28 | mulgcd | |
|
29 | 25 26 27 28 | syl3an | |
30 | 19 24 29 | 3eqtr3d | |
31 | gcdabs | |
|
32 | 31 | 3adant1 | |
33 | 32 | oveq2d | |
34 | 30 33 | eqtrd | |
35 | 7 12 34 | 3eqtr4rd | |