Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of Gleason p. 133. (Contributed by NM, 7-Mar-2005) (Proof shortened by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | abstri | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re | |
|
2 | 1 | a1i | |
3 | simpl | |
|
4 | simpr | |
|
5 | 4 | cjcld | |
6 | 3 5 | mulcld | |
7 | 6 | recld | |
8 | 2 7 | remulcld | |
9 | abscl | |
|
10 | 3 9 | syl | |
11 | abscl | |
|
12 | 4 11 | syl | |
13 | 10 12 | remulcld | |
14 | 2 13 | remulcld | |
15 | 10 | resqcld | |
16 | 12 | resqcld | |
17 | 15 16 | readdcld | |
18 | releabs | |
|
19 | 6 18 | syl | |
20 | absmul | |
|
21 | 3 5 20 | syl2anc | |
22 | abscj | |
|
23 | 4 22 | syl | |
24 | 23 | oveq2d | |
25 | 21 24 | eqtrd | |
26 | 19 25 | breqtrd | |
27 | 2rp | |
|
28 | 27 | a1i | |
29 | 7 13 28 | lemul2d | |
30 | 26 29 | mpbid | |
31 | 8 14 17 30 | leadd2dd | |
32 | sqabsadd | |
|
33 | 10 | recnd | |
34 | 12 | recnd | |
35 | binom2 | |
|
36 | 33 34 35 | syl2anc | |
37 | 15 | recnd | |
38 | 14 | recnd | |
39 | 16 | recnd | |
40 | 37 38 39 | add32d | |
41 | 36 40 | eqtrd | |
42 | 31 32 41 | 3brtr4d | |
43 | addcl | |
|
44 | abscl | |
|
45 | 43 44 | syl | |
46 | 10 12 | readdcld | |
47 | absge0 | |
|
48 | 43 47 | syl | |
49 | absge0 | |
|
50 | 3 49 | syl | |
51 | absge0 | |
|
52 | 4 51 | syl | |
53 | 10 12 50 52 | addge0d | |
54 | 45 46 48 53 | le2sqd | |
55 | 42 54 | mpbird | |