| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
|
| 2 |
1
|
a1i |
|
| 3 |
|
simpl |
|
| 4 |
|
simpr |
|
| 5 |
4
|
cjcld |
|
| 6 |
3 5
|
mulcld |
|
| 7 |
6
|
recld |
|
| 8 |
2 7
|
remulcld |
|
| 9 |
|
abscl |
|
| 10 |
3 9
|
syl |
|
| 11 |
|
abscl |
|
| 12 |
4 11
|
syl |
|
| 13 |
10 12
|
remulcld |
|
| 14 |
2 13
|
remulcld |
|
| 15 |
10
|
resqcld |
|
| 16 |
12
|
resqcld |
|
| 17 |
15 16
|
readdcld |
|
| 18 |
|
releabs |
|
| 19 |
6 18
|
syl |
|
| 20 |
|
absmul |
|
| 21 |
3 5 20
|
syl2anc |
|
| 22 |
|
abscj |
|
| 23 |
4 22
|
syl |
|
| 24 |
23
|
oveq2d |
|
| 25 |
21 24
|
eqtrd |
|
| 26 |
19 25
|
breqtrd |
|
| 27 |
|
2rp |
|
| 28 |
27
|
a1i |
|
| 29 |
7 13 28
|
lemul2d |
|
| 30 |
26 29
|
mpbid |
|
| 31 |
8 14 17 30
|
leadd2dd |
|
| 32 |
|
sqabsadd |
|
| 33 |
10
|
recnd |
|
| 34 |
12
|
recnd |
|
| 35 |
|
binom2 |
|
| 36 |
33 34 35
|
syl2anc |
|
| 37 |
15
|
recnd |
|
| 38 |
14
|
recnd |
|
| 39 |
16
|
recnd |
|
| 40 |
37 38 39
|
add32d |
|
| 41 |
36 40
|
eqtrd |
|
| 42 |
31 32 41
|
3brtr4d |
|
| 43 |
|
addcl |
|
| 44 |
|
abscl |
|
| 45 |
43 44
|
syl |
|
| 46 |
10 12
|
readdcld |
|
| 47 |
|
absge0 |
|
| 48 |
43 47
|
syl |
|
| 49 |
|
absge0 |
|
| 50 |
3 49
|
syl |
|
| 51 |
|
absge0 |
|
| 52 |
4 51
|
syl |
|
| 53 |
10 12 50 52
|
addge0d |
|
| 54 |
45 46 48 53
|
le2sqd |
|
| 55 |
42 54
|
mpbird |
|