| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abv0.a |  | 
						
							| 2 |  | abvneg.b |  | 
						
							| 3 |  | abvsubtri.p |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 2 4 5 3 | grpsubval |  | 
						
							| 7 | 6 | 3adant1 |  | 
						
							| 8 | 7 | fveq2d |  | 
						
							| 9 | 1 | abvrcl |  | 
						
							| 10 | 9 | 3ad2ant1 |  | 
						
							| 11 |  | ringgrp |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 |  | simp3 |  | 
						
							| 14 | 2 5 | grpinvcl |  | 
						
							| 15 | 12 13 14 | syl2anc |  | 
						
							| 16 | 1 2 4 | abvtri |  | 
						
							| 17 | 15 16 | syld3an3 |  | 
						
							| 18 | 1 2 5 | abvneg |  | 
						
							| 19 | 18 | 3adant2 |  | 
						
							| 20 | 19 | oveq2d |  | 
						
							| 21 | 17 20 | breqtrd |  | 
						
							| 22 | 8 21 | eqbrtrd |  |