Description: A proof of the well-ordering theorem weth , an Axiom of Choice equivalent, restricted to sets dominated by some ordinal (in particular finite sets and countable sets), proven in ZF without AC. (Contributed by Mario Carneiro, 5-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | ac10ct | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | |
|
2 | 1 | brdom | |
3 | f1f | |
|
4 | 3 | frnd | |
5 | onss | |
|
6 | sstr2 | |
|
7 | 4 5 6 | syl2im | |
8 | epweon | |
|
9 | wess | |
|
10 | 7 8 9 | syl6mpi | |
11 | 10 | adantl | |
12 | f1f1orn | |
|
13 | eqid | |
|
14 | 13 | f1owe | |
15 | 12 14 | syl | |
16 | weinxp | |
|
17 | reldom | |
|
18 | 17 | brrelex1i | |
19 | sqxpexg | |
|
20 | incom | |
|
21 | inex1g | |
|
22 | 20 21 | eqeltrrid | |
23 | weeq1 | |
|
24 | 23 | spcegv | |
25 | 18 19 22 24 | 4syl | |
26 | 16 25 | biimtrid | |
27 | 15 26 | sylan9r | |
28 | 11 27 | syld | |
29 | 28 | impancom | |
30 | 29 | exlimdv | |
31 | 2 30 | biimtrid | |
32 | 31 | ex | |
33 | 32 | pm2.43b | |
34 | 33 | rexlimiv | |