Metamath Proof Explorer


Theorem ac10ct

Description: A proof of the well-ordering theorem weth , an Axiom of Choice equivalent, restricted to sets dominated by some ordinal (in particular finite sets and countable sets), proven in ZF without AC. (Contributed by Mario Carneiro, 5-Jan-2013)

Ref Expression
Assertion ac10ct yOnAyxxWeA

Proof

Step Hyp Ref Expression
1 vex yV
2 1 brdom Ayff:A1-1y
3 f1f f:A1-1yf:Ay
4 3 frnd f:A1-1yranfy
5 onss yOnyOn
6 sstr2 ranfyyOnranfOn
7 4 5 6 syl2im f:A1-1yyOnranfOn
8 epweon EWeOn
9 wess ranfOnEWeOnEWeranf
10 7 8 9 syl6mpi f:A1-1yyOnEWeranf
11 10 adantl Ayf:A1-1yyOnEWeranf
12 f1f1orn f:A1-1yf:A1-1 ontoranf
13 eqid wz|fwEfz=wz|fwEfz
14 13 f1owe f:A1-1 ontoranfEWeranfwz|fwEfzWeA
15 12 14 syl f:A1-1yEWeranfwz|fwEfzWeA
16 weinxp wz|fwEfzWeAwz|fwEfzA×AWeA
17 reldom Rel
18 17 brrelex1i AyAV
19 sqxpexg AVA×AV
20 incom A×Awz|fwEfz=wz|fwEfzA×A
21 inex1g A×AVA×Awz|fwEfzV
22 20 21 eqeltrrid A×AVwz|fwEfzA×AV
23 weeq1 x=wz|fwEfzA×AxWeAwz|fwEfzA×AWeA
24 23 spcegv wz|fwEfzA×AVwz|fwEfzA×AWeAxxWeA
25 18 19 22 24 4syl Aywz|fwEfzA×AWeAxxWeA
26 16 25 biimtrid Aywz|fwEfzWeAxxWeA
27 15 26 sylan9r Ayf:A1-1yEWeranfxxWeA
28 11 27 syld Ayf:A1-1yyOnxxWeA
29 28 impancom AyyOnf:A1-1yxxWeA
30 29 exlimdv AyyOnff:A1-1yxxWeA
31 2 30 biimtrid AyyOnAyxxWeA
32 31 ex AyyOnAyxxWeA
33 32 pm2.43b yOnAyxxWeA
34 33 rexlimiv yOnAyxxWeA