Metamath Proof Explorer


Theorem ackval3

Description: The Ackermann function at 3. (Contributed by AV, 7-May-2024)

Ref Expression
Assertion ackval3 Could not format assertion : No typesetting found for |- ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-3 3=2+1
2 1 fveq2i Could not format ( Ack ` 3 ) = ( Ack ` ( 2 + 1 ) ) : No typesetting found for |- ( Ack ` 3 ) = ( Ack ` ( 2 + 1 ) ) with typecode |-
3 2nn0 20
4 ackvalsuc1mpt Could not format ( 2 e. NN0 -> ( Ack ` ( 2 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) ) : No typesetting found for |- ( 2 e. NN0 -> ( Ack ` ( 2 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) ) with typecode |-
5 3 4 ax-mp Could not format ( Ack ` ( 2 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) : No typesetting found for |- ( Ack ` ( 2 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) with typecode |-
6 peano2nn0 n0n+10
7 3nn0 30
8 ackval2 Could not format ( Ack ` 2 ) = ( i e. NN0 |-> ( ( 2 x. i ) + 3 ) ) : No typesetting found for |- ( Ack ` 2 ) = ( i e. NN0 |-> ( ( 2 x. i ) + 3 ) ) with typecode |-
9 8 itcovalt2 Could not format ( ( ( n + 1 ) e. NN0 /\ 3 e. NN0 ) -> ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) : No typesetting found for |- ( ( ( n + 1 ) e. NN0 /\ 3 e. NN0 ) -> ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) with typecode |-
10 6 7 9 sylancl Could not format ( n e. NN0 -> ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) : No typesetting found for |- ( n e. NN0 -> ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ) with typecode |-
11 10 fveq1d Could not format ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ` 1 ) ) : No typesetting found for |- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( ( ( i + 3 ) x. ( 2 ^ ( n + 1 ) ) ) - 3 ) ) ` 1 ) ) with typecode |-
12 eqidd n0i0i+32n+13=i0i+32n+13
13 oveq1 i=1i+3=1+3
14 3cn 3
15 ax-1cn 1
16 3p1e4 3+1=4
17 14 15 16 addcomli 1+3=4
18 13 17 eqtrdi i=1i+3=4
19 18 oveq1d i=1i+32n+1=42n+1
20 19 oveq1d i=1i+32n+13=42n+13
21 20 adantl n0i=1i+32n+13=42n+13
22 1nn0 10
23 22 a1i n010
24 ovexd n042n+13V
25 12 21 23 24 fvmptd n0i0i+32n+131=42n+13
26 sq2 22=4
27 26 eqcomi 4=22
28 27 a1i n04=22
29 28 oveq1d n042n+1=222n+1
30 2cnd n02
31 3 a1i n020
32 30 6 31 expaddd n022+n+1=222n+1
33 nn0cn n0n
34 1cnd n01
35 30 33 34 add12d n02+n+1=n+2+1
36 2p1e3 2+1=3
37 36 oveq2i n+2+1=n+3
38 35 37 eqtrdi n02+n+1=n+3
39 38 oveq2d n022+n+1=2n+3
40 29 32 39 3eqtr2d n042n+1=2n+3
41 40 oveq1d n042n+13=2n+33
42 11 25 41 3eqtrd Could not format ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( 2 ^ ( n + 3 ) ) - 3 ) ) : No typesetting found for |- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( 2 ^ ( n + 3 ) ) - 3 ) ) with typecode |-
43 42 mpteq2ia Could not format ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) : No typesetting found for |- ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 2 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) with typecode |-
44 2 5 43 3eqtri Could not format ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) : No typesetting found for |- ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) with typecode |-