| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-3 |  | 
						
							| 2 | 1 | fveq2i |  | 
						
							| 3 |  | 2nn0 |  | 
						
							| 4 |  | ackvalsuc1mpt |  | 
						
							| 5 | 3 4 | ax-mp |  | 
						
							| 6 |  | peano2nn0 |  | 
						
							| 7 |  | 3nn0 |  | 
						
							| 8 |  | ackval2 |  | 
						
							| 9 | 8 | itcovalt2 |  | 
						
							| 10 | 6 7 9 | sylancl |  | 
						
							| 11 | 10 | fveq1d |  | 
						
							| 12 |  | eqidd |  | 
						
							| 13 |  | oveq1 |  | 
						
							| 14 |  | 3cn |  | 
						
							| 15 |  | ax-1cn |  | 
						
							| 16 |  | 3p1e4 |  | 
						
							| 17 | 14 15 16 | addcomli |  | 
						
							| 18 | 13 17 | eqtrdi |  | 
						
							| 19 | 18 | oveq1d |  | 
						
							| 20 | 19 | oveq1d |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 |  | 1nn0 |  | 
						
							| 23 | 22 | a1i |  | 
						
							| 24 |  | ovexd |  | 
						
							| 25 | 12 21 23 24 | fvmptd |  | 
						
							| 26 |  | sq2 |  | 
						
							| 27 | 26 | eqcomi |  | 
						
							| 28 | 27 | a1i |  | 
						
							| 29 | 28 | oveq1d |  | 
						
							| 30 |  | 2cnd |  | 
						
							| 31 | 3 | a1i |  | 
						
							| 32 | 30 6 31 | expaddd |  | 
						
							| 33 |  | nn0cn |  | 
						
							| 34 |  | 1cnd |  | 
						
							| 35 | 30 33 34 | add12d |  | 
						
							| 36 |  | 2p1e3 |  | 
						
							| 37 | 36 | oveq2i |  | 
						
							| 38 | 35 37 | eqtrdi |  | 
						
							| 39 | 38 | oveq2d |  | 
						
							| 40 | 29 32 39 | 3eqtr2d |  | 
						
							| 41 | 40 | oveq1d |  | 
						
							| 42 | 11 25 41 | 3eqtrd |  | 
						
							| 43 | 42 | mpteq2ia |  | 
						
							| 44 | 2 5 43 | 3eqtri |  |