Description: Construct a mapping satisfying the consequent of isacn . (Contributed by Mario Carneiro, 31-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | acnlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvssunirn | |
|
2 | simpr | |
|
3 | 1 2 | sselid | |
4 | 3 | ralimiaa | |
5 | eqid | |
|
6 | 5 | fmpt | |
7 | 4 6 | sylib | |
8 | id | |
|
9 | vex | |
|
10 | 9 | rnex | |
11 | 10 | uniex | |
12 | fex2 | |
|
13 | 11 12 | mp3an3 | |
14 | 7 8 13 | syl2anr | |
15 | 5 | fvmpt2 | |
16 | 15 2 | eqeltrd | |
17 | 16 | ralimiaa | |
18 | 17 | adantl | |
19 | nfmpt1 | |
|
20 | 19 | nfeq2 | |
21 | fveq1 | |
|
22 | 21 | eleq1d | |
23 | 20 22 | ralbid | |
24 | 14 18 23 | spcedv | |