Metamath Proof Explorer


Theorem acnlem

Description: Construct a mapping satisfying the consequent of isacn . (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion acnlem AVxABfxgxAgxfx

Proof

Step Hyp Ref Expression
1 fvssunirn fxranf
2 simpr xABfxBfx
3 1 2 sselid xABfxBranf
4 3 ralimiaa xABfxxABranf
5 eqid xAB=xAB
6 5 fmpt xABranfxAB:Aranf
7 4 6 sylib xABfxxAB:Aranf
8 id AVAV
9 vex fV
10 9 rnex ranfV
11 10 uniex ranfV
12 fex2 xAB:AranfAVranfVxABV
13 11 12 mp3an3 xAB:AranfAVxABV
14 7 8 13 syl2anr AVxABfxxABV
15 5 fvmpt2 xABfxxABx=B
16 15 2 eqeltrd xABfxxABxfx
17 16 ralimiaa xABfxxAxABxfx
18 17 adantl AVxABfxxAxABxfx
19 nfmpt1 _xxAB
20 19 nfeq2 xg=xAB
21 fveq1 g=xABgx=xABx
22 21 eleq1d g=xABgxfxxABxfx
23 20 22 ralbid g=xABxAgxfxxAxABxfx
24 14 18 23 spcedv AVxABfxgxAgxfx