Metamath Proof Explorer


Theorem acsfn1p

Description: Construction of a closure rule from a one-parameterpartial operation. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Assertion acsfn1p XVbYEXa𝒫X|baYEaACSX

Proof

Step Hyp Ref Expression
1 riinrab 𝒫XbXYa𝒫X|baEa=a𝒫X|bXYbaEa
2 inss2 XYY
3 2 sseli bXYbY
4 3 biantrud bXYbababY
5 vex bV
6 5 snss baba
7 6 bicomi baba
8 elin baYbabY
9 4 7 8 3bitr4g bXYbabaY
10 9 imbi1d bXYbaEabaYEa
11 10 ralbiia bXYbaEabXYbaYEa
12 elpwi a𝒫XaX
13 12 ssrind a𝒫XaYXY
14 13 adantl XVbYEXa𝒫XaYXY
15 ralss aYXYbaYEabXYbaYEa
16 14 15 syl XVbYEXa𝒫XbaYEabXYbaYEa
17 11 16 bitr4id XVbYEXa𝒫XbXYbaEabaYEa
18 17 rabbidva XVbYEXa𝒫X|bXYbaEa=a𝒫X|baYEa
19 1 18 eqtrid XVbYEX𝒫XbXYa𝒫X|baEa=a𝒫X|baYEa
20 mreacs XVACSXMoore𝒫X
21 20 adantr XVbYEXACSXMoore𝒫X
22 ssralv XYYbYEXbXYEX
23 2 22 ax-mp bYEXbXYEX
24 simpll XVbXYEXXV
25 simpr XVbXYEXEX
26 inss1 XYX
27 26 sseli bXYbX
28 27 ad2antlr XVbXYEXbX
29 28 snssd XVbXYEXbX
30 snfi bFin
31 30 a1i XVbXYEXbFin
32 acsfn XVEXbXbFina𝒫X|baEaACSX
33 24 25 29 31 32 syl22anc XVbXYEXa𝒫X|baEaACSX
34 33 ex XVbXYEXa𝒫X|baEaACSX
35 34 ralimdva XVbXYEXbXYa𝒫X|baEaACSX
36 23 35 syl5 XVbYEXbXYa𝒫X|baEaACSX
37 36 imp XVbYEXbXYa𝒫X|baEaACSX
38 mreriincl ACSXMoore𝒫XbXYa𝒫X|baEaACSX𝒫XbXYa𝒫X|baEaACSX
39 21 37 38 syl2anc XVbYEX𝒫XbXYa𝒫X|baEaACSX
40 19 39 eqeltrrd XVbYEXa𝒫X|baYEaACSX