Metamath Proof Explorer


Theorem addsqrexnreu

Description: For each complex number, there exists a complex number to which the square of more than one (or no) other complex numbers can be added to result in the given complex number.

Remark: This theorem, together with addsq2reu , shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu ). For more details see comment for addsqnreup . (Contributed by AV, 20-Jun-2023)

Ref Expression
Assertion addsqrexnreu C a ¬ ∃! b a + b 2 = C

Proof

Step Hyp Ref Expression
1 peano2cnm C C 1
2 oveq1 a = C 1 a + b 2 = C - 1 + b 2
3 2 eqeq1d a = C 1 a + b 2 = C C - 1 + b 2 = C
4 3 reubidv a = C 1 ∃! b a + b 2 = C ∃! b C - 1 + b 2 = C
5 4 notbid a = C 1 ¬ ∃! b a + b 2 = C ¬ ∃! b C - 1 + b 2 = C
6 5 adantl C a = C 1 ¬ ∃! b a + b 2 = C ¬ ∃! b C - 1 + b 2 = C
7 ax-1cn 1
8 neg1cn 1
9 1nn 1
10 nnneneg 1 1 1
11 9 10 ax-mp 1 1
12 7 8 11 3pm3.2i 1 1 1 1
13 sq1 1 2 = 1
14 13 eqcomi 1 = 1 2
15 neg1sqe1 1 2 = 1
16 15 eqcomi 1 = 1 2
17 14 16 pm3.2i 1 = 1 2 1 = 1 2
18 oveq1 b = 1 b 2 = 1 2
19 18 eqeq2d b = 1 1 = b 2 1 = 1 2
20 oveq1 b = 1 b 2 = 1 2
21 20 eqeq2d b = 1 1 = b 2 1 = 1 2
22 19 21 2nreu 1 1 1 1 1 = 1 2 1 = 1 2 ¬ ∃! b 1 = b 2
23 12 17 22 mp2 ¬ ∃! b 1 = b 2
24 simpl C b C
25 1 adantr C b C 1
26 sqcl b b 2
27 26 adantl C b b 2
28 24 25 27 subaddd C b C C 1 = b 2 C - 1 + b 2 = C
29 id C C
30 1cnd C 1
31 29 30 nncand C C C 1 = 1
32 31 adantr C b C C 1 = 1
33 32 eqeq1d C b C C 1 = b 2 1 = b 2
34 28 33 bitr3d C b C - 1 + b 2 = C 1 = b 2
35 34 reubidva C ∃! b C - 1 + b 2 = C ∃! b 1 = b 2
36 23 35 mtbiri C ¬ ∃! b C - 1 + b 2 = C
37 1 6 36 rspcedvd C a ¬ ∃! b a + b 2 = C