Metamath Proof Explorer


Theorem addsqrexnreu

Description: For each complex number, there exists a complex number to which the square of more than one (or no) other complex numbers can be added to result in the given complex number.

Remark: This theorem, together with addsq2reu , shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu ). For more details see comment for addsqnreup . (Contributed by AV, 20-Jun-2023)

Ref Expression
Assertion addsqrexnreu Ca¬∃!ba+b2=C

Proof

Step Hyp Ref Expression
1 peano2cnm CC1
2 oveq1 a=C1a+b2=C-1+b2
3 2 eqeq1d a=C1a+b2=CC-1+b2=C
4 3 reubidv a=C1∃!ba+b2=C∃!bC-1+b2=C
5 4 notbid a=C1¬∃!ba+b2=C¬∃!bC-1+b2=C
6 5 adantl Ca=C1¬∃!ba+b2=C¬∃!bC-1+b2=C
7 ax-1cn 1
8 neg1cn 1
9 1nn 1
10 nnneneg 111
11 9 10 ax-mp 11
12 7 8 11 3pm3.2i 1111
13 sq1 12=1
14 13 eqcomi 1=12
15 neg1sqe1 12=1
16 15 eqcomi 1=12
17 14 16 pm3.2i 1=121=12
18 oveq1 b=1b2=12
19 18 eqeq2d b=11=b21=12
20 oveq1 b=1b2=12
21 20 eqeq2d b=11=b21=12
22 19 21 2nreu 11111=121=12¬∃!b1=b2
23 12 17 22 mp2 ¬∃!b1=b2
24 simpl CbC
25 1 adantr CbC1
26 sqcl bb2
27 26 adantl Cbb2
28 24 25 27 subaddd CbCC1=b2C-1+b2=C
29 id CC
30 1cnd C1
31 29 30 nncand CCC1=1
32 31 adantr CbCC1=1
33 32 eqeq1d CbCC1=b21=b2
34 28 33 bitr3d CbC-1+b2=C1=b2
35 34 reubidva C∃!bC-1+b2=C∃!b1=b2
36 23 35 mtbiri C¬∃!bC-1+b2=C
37 1 6 36 rspcedvd Ca¬∃!ba+b2=C