Metamath Proof Explorer


Theorem addsrpr

Description: Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995) (Revised by Mario Carneiro, 12-Aug-2015) (New usage is discouraged.)

Ref Expression
Assertion addsrpr A𝑷B𝑷C𝑷D𝑷AB~𝑹+𝑹CD~𝑹=A+𝑷CB+𝑷D~𝑹

Proof

Step Hyp Ref Expression
1 opelxpi A𝑷B𝑷AB𝑷×𝑷
2 enrex ~𝑹V
3 2 ecelqsi AB𝑷×𝑷AB~𝑹𝑷×𝑷/~𝑹
4 1 3 syl A𝑷B𝑷AB~𝑹𝑷×𝑷/~𝑹
5 opelxpi C𝑷D𝑷CD𝑷×𝑷
6 2 ecelqsi CD𝑷×𝑷CD~𝑹𝑷×𝑷/~𝑹
7 5 6 syl C𝑷D𝑷CD~𝑹𝑷×𝑷/~𝑹
8 4 7 anim12i A𝑷B𝑷C𝑷D𝑷AB~𝑹𝑷×𝑷/~𝑹CD~𝑹𝑷×𝑷/~𝑹
9 eqid AB~𝑹=AB~𝑹
10 eqid CD~𝑹=CD~𝑹
11 9 10 pm3.2i AB~𝑹=AB~𝑹CD~𝑹=CD~𝑹
12 eqid A+𝑷CB+𝑷D~𝑹=A+𝑷CB+𝑷D~𝑹
13 opeq12 w=Av=Bwv=AB
14 13 eceq1d w=Av=Bwv~𝑹=AB~𝑹
15 14 eqeq2d w=Av=BAB~𝑹=wv~𝑹AB~𝑹=AB~𝑹
16 15 anbi1d w=Av=BAB~𝑹=wv~𝑹CD~𝑹=CD~𝑹AB~𝑹=AB~𝑹CD~𝑹=CD~𝑹
17 simpl w=Av=Bw=A
18 17 oveq1d w=Av=Bw+𝑷C=A+𝑷C
19 simpr w=Av=Bv=B
20 19 oveq1d w=Av=Bv+𝑷D=B+𝑷D
21 18 20 opeq12d w=Av=Bw+𝑷Cv+𝑷D=A+𝑷CB+𝑷D
22 21 eceq1d w=Av=Bw+𝑷Cv+𝑷D~𝑹=A+𝑷CB+𝑷D~𝑹
23 22 eqeq2d w=Av=BA+𝑷CB+𝑷D~𝑹=w+𝑷Cv+𝑷D~𝑹A+𝑷CB+𝑷D~𝑹=A+𝑷CB+𝑷D~𝑹
24 16 23 anbi12d w=Av=BAB~𝑹=wv~𝑹CD~𝑹=CD~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷Cv+𝑷D~𝑹AB~𝑹=AB~𝑹CD~𝑹=CD~𝑹A+𝑷CB+𝑷D~𝑹=A+𝑷CB+𝑷D~𝑹
25 24 spc2egv A𝑷B𝑷AB~𝑹=AB~𝑹CD~𝑹=CD~𝑹A+𝑷CB+𝑷D~𝑹=A+𝑷CB+𝑷D~𝑹wvAB~𝑹=wv~𝑹CD~𝑹=CD~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷Cv+𝑷D~𝑹
26 opeq12 u=Ct=Dut=CD
27 26 eceq1d u=Ct=Dut~𝑹=CD~𝑹
28 27 eqeq2d u=Ct=DCD~𝑹=ut~𝑹CD~𝑹=CD~𝑹
29 28 anbi2d u=Ct=DAB~𝑹=wv~𝑹CD~𝑹=ut~𝑹AB~𝑹=wv~𝑹CD~𝑹=CD~𝑹
30 simpl u=Ct=Du=C
31 30 oveq2d u=Ct=Dw+𝑷u=w+𝑷C
32 simpr u=Ct=Dt=D
33 32 oveq2d u=Ct=Dv+𝑷t=v+𝑷D
34 31 33 opeq12d u=Ct=Dw+𝑷uv+𝑷t=w+𝑷Cv+𝑷D
35 34 eceq1d u=Ct=Dw+𝑷uv+𝑷t~𝑹=w+𝑷Cv+𝑷D~𝑹
36 35 eqeq2d u=Ct=DA+𝑷CB+𝑷D~𝑹=w+𝑷uv+𝑷t~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷Cv+𝑷D~𝑹
37 29 36 anbi12d u=Ct=DAB~𝑹=wv~𝑹CD~𝑹=ut~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷uv+𝑷t~𝑹AB~𝑹=wv~𝑹CD~𝑹=CD~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷Cv+𝑷D~𝑹
38 37 spc2egv C𝑷D𝑷AB~𝑹=wv~𝑹CD~𝑹=CD~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷Cv+𝑷D~𝑹utAB~𝑹=wv~𝑹CD~𝑹=ut~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷uv+𝑷t~𝑹
39 38 2eximdv C𝑷D𝑷wvAB~𝑹=wv~𝑹CD~𝑹=CD~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷Cv+𝑷D~𝑹wvutAB~𝑹=wv~𝑹CD~𝑹=ut~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷uv+𝑷t~𝑹
40 25 39 sylan9 A𝑷B𝑷C𝑷D𝑷AB~𝑹=AB~𝑹CD~𝑹=CD~𝑹A+𝑷CB+𝑷D~𝑹=A+𝑷CB+𝑷D~𝑹wvutAB~𝑹=wv~𝑹CD~𝑹=ut~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷uv+𝑷t~𝑹
41 11 12 40 mp2ani A𝑷B𝑷C𝑷D𝑷wvutAB~𝑹=wv~𝑹CD~𝑹=ut~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷uv+𝑷t~𝑹
42 ecexg ~𝑹VA+𝑷CB+𝑷D~𝑹V
43 2 42 ax-mp A+𝑷CB+𝑷D~𝑹V
44 simp1 x=AB~𝑹y=CD~𝑹z=A+𝑷CB+𝑷D~𝑹x=AB~𝑹
45 44 eqeq1d x=AB~𝑹y=CD~𝑹z=A+𝑷CB+𝑷D~𝑹x=wv~𝑹AB~𝑹=wv~𝑹
46 simp2 x=AB~𝑹y=CD~𝑹z=A+𝑷CB+𝑷D~𝑹y=CD~𝑹
47 46 eqeq1d x=AB~𝑹y=CD~𝑹z=A+𝑷CB+𝑷D~𝑹y=ut~𝑹CD~𝑹=ut~𝑹
48 45 47 anbi12d x=AB~𝑹y=CD~𝑹z=A+𝑷CB+𝑷D~𝑹x=wv~𝑹y=ut~𝑹AB~𝑹=wv~𝑹CD~𝑹=ut~𝑹
49 simp3 x=AB~𝑹y=CD~𝑹z=A+𝑷CB+𝑷D~𝑹z=A+𝑷CB+𝑷D~𝑹
50 49 eqeq1d x=AB~𝑹y=CD~𝑹z=A+𝑷CB+𝑷D~𝑹z=w+𝑷uv+𝑷t~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷uv+𝑷t~𝑹
51 48 50 anbi12d x=AB~𝑹y=CD~𝑹z=A+𝑷CB+𝑷D~𝑹x=wv~𝑹y=ut~𝑹z=w+𝑷uv+𝑷t~𝑹AB~𝑹=wv~𝑹CD~𝑹=ut~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷uv+𝑷t~𝑹
52 51 4exbidv x=AB~𝑹y=CD~𝑹z=A+𝑷CB+𝑷D~𝑹wvutx=wv~𝑹y=ut~𝑹z=w+𝑷uv+𝑷t~𝑹wvutAB~𝑹=wv~𝑹CD~𝑹=ut~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷uv+𝑷t~𝑹
53 addsrmo x𝑷×𝑷/~𝑹y𝑷×𝑷/~𝑹*zwvutx=wv~𝑹y=ut~𝑹z=w+𝑷uv+𝑷t~𝑹
54 df-plr +𝑹=xyz|x𝑹y𝑹wvutx=wv~𝑹y=ut~𝑹z=w+𝑷uv+𝑷t~𝑹
55 df-nr 𝑹=𝑷×𝑷/~𝑹
56 55 eleq2i x𝑹x𝑷×𝑷/~𝑹
57 55 eleq2i y𝑹y𝑷×𝑷/~𝑹
58 56 57 anbi12i x𝑹y𝑹x𝑷×𝑷/~𝑹y𝑷×𝑷/~𝑹
59 58 anbi1i x𝑹y𝑹wvutx=wv~𝑹y=ut~𝑹z=w+𝑷uv+𝑷t~𝑹x𝑷×𝑷/~𝑹y𝑷×𝑷/~𝑹wvutx=wv~𝑹y=ut~𝑹z=w+𝑷uv+𝑷t~𝑹
60 59 oprabbii xyz|x𝑹y𝑹wvutx=wv~𝑹y=ut~𝑹z=w+𝑷uv+𝑷t~𝑹=xyz|x𝑷×𝑷/~𝑹y𝑷×𝑷/~𝑹wvutx=wv~𝑹y=ut~𝑹z=w+𝑷uv+𝑷t~𝑹
61 54 60 eqtri +𝑹=xyz|x𝑷×𝑷/~𝑹y𝑷×𝑷/~𝑹wvutx=wv~𝑹y=ut~𝑹z=w+𝑷uv+𝑷t~𝑹
62 52 53 61 ovig AB~𝑹𝑷×𝑷/~𝑹CD~𝑹𝑷×𝑷/~𝑹A+𝑷CB+𝑷D~𝑹VwvutAB~𝑹=wv~𝑹CD~𝑹=ut~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷uv+𝑷t~𝑹AB~𝑹+𝑹CD~𝑹=A+𝑷CB+𝑷D~𝑹
63 43 62 mp3an3 AB~𝑹𝑷×𝑷/~𝑹CD~𝑹𝑷×𝑷/~𝑹wvutAB~𝑹=wv~𝑹CD~𝑹=ut~𝑹A+𝑷CB+𝑷D~𝑹=w+𝑷uv+𝑷t~𝑹AB~𝑹+𝑹CD~𝑹=A+𝑷CB+𝑷D~𝑹
64 8 41 63 sylc A𝑷B𝑷C𝑷D𝑷AB~𝑹+𝑹CD~𝑹=A+𝑷CB+𝑷D~𝑹