Description: The adjoint of the scalar product of an operator. Theorem 3.11(ii) of Beran p. 106. (Contributed by NM, 21-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | adjmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmadjop | |
|
2 | homulcl | |
|
3 | 1 2 | sylan2 | |
4 | cjcl | |
|
5 | dmadjrn | |
|
6 | dmadjop | |
|
7 | 5 6 | syl | |
8 | homulcl | |
|
9 | 4 7 8 | syl2an | |
10 | adj2 | |
|
11 | 10 | 3expb | |
12 | 11 | adantll | |
13 | 12 | oveq2d | |
14 | 1 | ffvelcdmda | |
15 | ax-his3 | |
|
16 | 14 15 | syl3an2 | |
17 | 16 | 3exp | |
18 | 17 | expd | |
19 | 18 | imp43 | |
20 | simpll | |
|
21 | simprl | |
|
22 | adjcl | |
|
23 | 22 | ad2ant2l | |
24 | his52 | |
|
25 | 20 21 23 24 | syl3anc | |
26 | 13 19 25 | 3eqtr4d | |
27 | homval | |
|
28 | 1 27 | syl3an2 | |
29 | 28 | 3expa | |
30 | 29 | adantrr | |
31 | 30 | oveq1d | |
32 | id | |
|
33 | homval | |
|
34 | 4 7 32 33 | syl3an | |
35 | 34 | 3expa | |
36 | 35 | adantrl | |
37 | 36 | oveq2d | |
38 | 26 31 37 | 3eqtr4d | |
39 | 38 | ralrimivva | |
40 | adjeq | |
|
41 | 3 9 39 40 | syl3anc | |