Metamath Proof Explorer


Theorem adjmul

Description: The adjoint of the scalar product of an operator. Theorem 3.11(ii) of Beran p. 106. (Contributed by NM, 21-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adjmul ATdomadjhadjhA·opT=A·opadjhT

Proof

Step Hyp Ref Expression
1 dmadjop TdomadjhT:
2 homulcl AT:A·opT:
3 1 2 sylan2 ATdomadjhA·opT:
4 cjcl AA
5 dmadjrn TdomadjhadjhTdomadjh
6 dmadjop adjhTdomadjhadjhT:
7 5 6 syl TdomadjhadjhT:
8 homulcl AadjhT:A·opadjhT:
9 4 7 8 syl2an ATdomadjhA·opadjhT:
10 adj2 TdomadjhxyTxihy=xihadjhTy
11 10 3expb TdomadjhxyTxihy=xihadjhTy
12 11 adantll ATdomadjhxyTxihy=xihadjhTy
13 12 oveq2d ATdomadjhxyATxihy=AxihadjhTy
14 1 ffvelcdmda TdomadjhxTx
15 ax-his3 ATxyATxihy=ATxihy
16 14 15 syl3an2 ATdomadjhxyATxihy=ATxihy
17 16 3exp ATdomadjhxyATxihy=ATxihy
18 17 expd ATdomadjhxyATxihy=ATxihy
19 18 imp43 ATdomadjhxyATxihy=ATxihy
20 simpll ATdomadjhxyA
21 simprl ATdomadjhxyx
22 adjcl TdomadjhyadjhTy
23 22 ad2ant2l ATdomadjhxyadjhTy
24 his52 AxadjhTyxihAadjhTy=AxihadjhTy
25 20 21 23 24 syl3anc ATdomadjhxyxihAadjhTy=AxihadjhTy
26 13 19 25 3eqtr4d ATdomadjhxyATxihy=xihAadjhTy
27 homval AT:xA·opTx=ATx
28 1 27 syl3an2 ATdomadjhxA·opTx=ATx
29 28 3expa ATdomadjhxA·opTx=ATx
30 29 adantrr ATdomadjhxyA·opTx=ATx
31 30 oveq1d ATdomadjhxyA·opTxihy=ATxihy
32 id yy
33 homval AadjhT:yA·opadjhTy=AadjhTy
34 4 7 32 33 syl3an ATdomadjhyA·opadjhTy=AadjhTy
35 34 3expa ATdomadjhyA·opadjhTy=AadjhTy
36 35 adantrl ATdomadjhxyA·opadjhTy=AadjhTy
37 36 oveq2d ATdomadjhxyxihA·opadjhTy=xihAadjhTy
38 26 31 37 3eqtr4d ATdomadjhxyA·opTxihy=xihA·opadjhTy
39 38 ralrimivva ATdomadjhxyA·opTxihy=xihA·opadjhTy
40 adjeq A·opT:A·opadjhT:xyA·opTxihy=xihA·opadjhTyadjhA·opT=A·opadjhT
41 3 9 39 40 syl3anc ATdomadjhadjhA·opT=A·opadjhT