Description: An infinite initial ordinal is characterized by the property of being initial - that is, it is a subset of any dominating ordinal. (Contributed by Jeff Hankins, 29-Oct-2009) (Proof shortened by Mario Carneiro, 20-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | alephinit | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isinfcard | |
|
2 | 1 | bicomi | |
3 | 2 | baib | |
4 | 3 | adantl | |
5 | onenon | |
|
6 | 5 | adantr | |
7 | onenon | |
|
8 | carddom2 | |
|
9 | 6 7 8 | syl2an | |
10 | cardonle | |
|
11 | 10 | adantl | |
12 | sstr | |
|
13 | 12 | expcom | |
14 | 11 13 | syl | |
15 | 9 14 | sylbird | |
16 | sseq1 | |
|
17 | 16 | imbi2d | |
18 | 15 17 | syl5ibcom | |
19 | 18 | ralrimdva | |
20 | oncardid | |
|
21 | ensym | |
|
22 | endom | |
|
23 | 20 21 22 | 3syl | |
24 | 23 | adantr | |
25 | cardon | |
|
26 | breq2 | |
|
27 | sseq2 | |
|
28 | 26 27 | imbi12d | |
29 | 28 | rspcv | |
30 | 25 29 | ax-mp | |
31 | 24 30 | syl5com | |
32 | cardonle | |
|
33 | 32 | adantr | |
34 | 33 | biantrurd | |
35 | eqss | |
|
36 | 34 35 | bitr4di | |
37 | 31 36 | sylibd | |
38 | 19 37 | impbid | |
39 | 4 38 | bitrd | |