Metamath Proof Explorer


Theorem alephinit

Description: An infinite initial ordinal is characterized by the property of being initial - that is, it is a subset of any dominating ordinal. (Contributed by Jeff Hankins, 29-Oct-2009) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion alephinit AOnωAAranxOnAxAx

Proof

Step Hyp Ref Expression
1 isinfcard ωAcardA=AAran
2 1 bicomi AranωAcardA=A
3 2 baib ωAArancardA=A
4 3 adantl AOnωAArancardA=A
5 onenon AOnAdomcard
6 5 adantr AOnωAAdomcard
7 onenon xOnxdomcard
8 carddom2 AdomcardxdomcardcardAcardxAx
9 6 7 8 syl2an AOnωAxOncardAcardxAx
10 cardonle xOncardxx
11 10 adantl AOnωAxOncardxx
12 sstr cardAcardxcardxxcardAx
13 12 expcom cardxxcardAcardxcardAx
14 11 13 syl AOnωAxOncardAcardxcardAx
15 9 14 sylbird AOnωAxOnAxcardAx
16 sseq1 cardA=AcardAxAx
17 16 imbi2d cardA=AAxcardAxAxAx
18 15 17 syl5ibcom AOnωAxOncardA=AAxAx
19 18 ralrimdva AOnωAcardA=AxOnAxAx
20 oncardid AOncardAA
21 ensym cardAAAcardA
22 endom AcardAAcardA
23 20 21 22 3syl AOnAcardA
24 23 adantr AOnωAAcardA
25 cardon cardAOn
26 breq2 x=cardAAxAcardA
27 sseq2 x=cardAAxAcardA
28 26 27 imbi12d x=cardAAxAxAcardAAcardA
29 28 rspcv cardAOnxOnAxAxAcardAAcardA
30 25 29 ax-mp xOnAxAxAcardAAcardA
31 24 30 syl5com AOnωAxOnAxAxAcardA
32 cardonle AOncardAA
33 32 adantr AOnωAcardAA
34 33 biantrurd AOnωAAcardAcardAAAcardA
35 eqss cardA=AcardAAAcardA
36 34 35 bitr4di AOnωAAcardAcardA=A
37 31 36 sylibd AOnωAxOnAxAxcardA=A
38 19 37 impbid AOnωAcardA=AxOnAxAx
39 4 38 bitrd AOnωAAranxOnAxAx