| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isinfcard |
|- ( ( _om C_ A /\ ( card ` A ) = A ) <-> A e. ran aleph ) |
| 2 |
1
|
bicomi |
|- ( A e. ran aleph <-> ( _om C_ A /\ ( card ` A ) = A ) ) |
| 3 |
2
|
baib |
|- ( _om C_ A -> ( A e. ran aleph <-> ( card ` A ) = A ) ) |
| 4 |
3
|
adantl |
|- ( ( A e. On /\ _om C_ A ) -> ( A e. ran aleph <-> ( card ` A ) = A ) ) |
| 5 |
|
onenon |
|- ( A e. On -> A e. dom card ) |
| 6 |
5
|
adantr |
|- ( ( A e. On /\ _om C_ A ) -> A e. dom card ) |
| 7 |
|
onenon |
|- ( x e. On -> x e. dom card ) |
| 8 |
|
carddom2 |
|- ( ( A e. dom card /\ x e. dom card ) -> ( ( card ` A ) C_ ( card ` x ) <-> A ~<_ x ) ) |
| 9 |
6 7 8
|
syl2an |
|- ( ( ( A e. On /\ _om C_ A ) /\ x e. On ) -> ( ( card ` A ) C_ ( card ` x ) <-> A ~<_ x ) ) |
| 10 |
|
cardonle |
|- ( x e. On -> ( card ` x ) C_ x ) |
| 11 |
10
|
adantl |
|- ( ( ( A e. On /\ _om C_ A ) /\ x e. On ) -> ( card ` x ) C_ x ) |
| 12 |
|
sstr |
|- ( ( ( card ` A ) C_ ( card ` x ) /\ ( card ` x ) C_ x ) -> ( card ` A ) C_ x ) |
| 13 |
12
|
expcom |
|- ( ( card ` x ) C_ x -> ( ( card ` A ) C_ ( card ` x ) -> ( card ` A ) C_ x ) ) |
| 14 |
11 13
|
syl |
|- ( ( ( A e. On /\ _om C_ A ) /\ x e. On ) -> ( ( card ` A ) C_ ( card ` x ) -> ( card ` A ) C_ x ) ) |
| 15 |
9 14
|
sylbird |
|- ( ( ( A e. On /\ _om C_ A ) /\ x e. On ) -> ( A ~<_ x -> ( card ` A ) C_ x ) ) |
| 16 |
|
sseq1 |
|- ( ( card ` A ) = A -> ( ( card ` A ) C_ x <-> A C_ x ) ) |
| 17 |
16
|
imbi2d |
|- ( ( card ` A ) = A -> ( ( A ~<_ x -> ( card ` A ) C_ x ) <-> ( A ~<_ x -> A C_ x ) ) ) |
| 18 |
15 17
|
syl5ibcom |
|- ( ( ( A e. On /\ _om C_ A ) /\ x e. On ) -> ( ( card ` A ) = A -> ( A ~<_ x -> A C_ x ) ) ) |
| 19 |
18
|
ralrimdva |
|- ( ( A e. On /\ _om C_ A ) -> ( ( card ` A ) = A -> A. x e. On ( A ~<_ x -> A C_ x ) ) ) |
| 20 |
|
oncardid |
|- ( A e. On -> ( card ` A ) ~~ A ) |
| 21 |
|
ensym |
|- ( ( card ` A ) ~~ A -> A ~~ ( card ` A ) ) |
| 22 |
|
endom |
|- ( A ~~ ( card ` A ) -> A ~<_ ( card ` A ) ) |
| 23 |
20 21 22
|
3syl |
|- ( A e. On -> A ~<_ ( card ` A ) ) |
| 24 |
23
|
adantr |
|- ( ( A e. On /\ _om C_ A ) -> A ~<_ ( card ` A ) ) |
| 25 |
|
cardon |
|- ( card ` A ) e. On |
| 26 |
|
breq2 |
|- ( x = ( card ` A ) -> ( A ~<_ x <-> A ~<_ ( card ` A ) ) ) |
| 27 |
|
sseq2 |
|- ( x = ( card ` A ) -> ( A C_ x <-> A C_ ( card ` A ) ) ) |
| 28 |
26 27
|
imbi12d |
|- ( x = ( card ` A ) -> ( ( A ~<_ x -> A C_ x ) <-> ( A ~<_ ( card ` A ) -> A C_ ( card ` A ) ) ) ) |
| 29 |
28
|
rspcv |
|- ( ( card ` A ) e. On -> ( A. x e. On ( A ~<_ x -> A C_ x ) -> ( A ~<_ ( card ` A ) -> A C_ ( card ` A ) ) ) ) |
| 30 |
25 29
|
ax-mp |
|- ( A. x e. On ( A ~<_ x -> A C_ x ) -> ( A ~<_ ( card ` A ) -> A C_ ( card ` A ) ) ) |
| 31 |
24 30
|
syl5com |
|- ( ( A e. On /\ _om C_ A ) -> ( A. x e. On ( A ~<_ x -> A C_ x ) -> A C_ ( card ` A ) ) ) |
| 32 |
|
cardonle |
|- ( A e. On -> ( card ` A ) C_ A ) |
| 33 |
32
|
adantr |
|- ( ( A e. On /\ _om C_ A ) -> ( card ` A ) C_ A ) |
| 34 |
33
|
biantrurd |
|- ( ( A e. On /\ _om C_ A ) -> ( A C_ ( card ` A ) <-> ( ( card ` A ) C_ A /\ A C_ ( card ` A ) ) ) ) |
| 35 |
|
eqss |
|- ( ( card ` A ) = A <-> ( ( card ` A ) C_ A /\ A C_ ( card ` A ) ) ) |
| 36 |
34 35
|
bitr4di |
|- ( ( A e. On /\ _om C_ A ) -> ( A C_ ( card ` A ) <-> ( card ` A ) = A ) ) |
| 37 |
31 36
|
sylibd |
|- ( ( A e. On /\ _om C_ A ) -> ( A. x e. On ( A ~<_ x -> A C_ x ) -> ( card ` A ) = A ) ) |
| 38 |
19 37
|
impbid |
|- ( ( A e. On /\ _om C_ A ) -> ( ( card ` A ) = A <-> A. x e. On ( A ~<_ x -> A C_ x ) ) ) |
| 39 |
4 38
|
bitrd |
|- ( ( A e. On /\ _om C_ A ) -> ( A e. ran aleph <-> A. x e. On ( A ~<_ x -> A C_ x ) ) ) |