Metamath Proof Explorer


Theorem algfx

Description: If F reaches a fixed point when the countdown function C reaches 0 , F remains fixed after N steps. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypotheses algcvga.1 F:SS
algcvga.2 R=seq0F1st0×A
algcvga.3 C:S0
algcvga.4 zSCFz0CFz<Cz
algcvga.5 N=CA
algfx.6 zSCz=0Fz=z
Assertion algfx ASKNRK=RN

Proof

Step Hyp Ref Expression
1 algcvga.1 F:SS
2 algcvga.2 R=seq0F1st0×A
3 algcvga.3 C:S0
4 algcvga.4 zSCFz0CFz<Cz
5 algcvga.5 N=CA
6 algfx.6 zSCz=0Fz=z
7 3 ffvelcdmi ASCA0
8 5 7 eqeltrid ASN0
9 8 nn0zd ASN
10 uzval NN=z|Nz
11 10 eleq2d NKNKz|Nz
12 11 pm5.32i NKNNKz|Nz
13 fveqeq2 m=NRm=RNRN=RN
14 13 imbi2d m=NASRm=RNASRN=RN
15 fveqeq2 m=kRm=RNRk=RN
16 15 imbi2d m=kASRm=RNASRk=RN
17 fveqeq2 m=k+1Rm=RNRk+1=RN
18 17 imbi2d m=k+1ASRm=RNASRk+1=RN
19 fveqeq2 m=KRm=RNRK=RN
20 19 imbi2d m=KASRm=RNASRK=RN
21 eqidd ASRN=RN
22 21 a1i NASRN=RN
23 10 eleq2d NkNkz|Nz
24 23 pm5.32i NkNNkz|Nz
25 eluznn0 N0kNk0
26 8 25 sylan ASkNk0
27 nn0uz 0=0
28 0zd AS0
29 id ASAS
30 1 a1i ASF:SS
31 27 2 28 29 30 algrp1 ASk0Rk+1=FRk
32 26 31 syldan ASkNRk+1=FRk
33 27 2 28 29 30 algrf ASR:0S
34 33 ffvelcdmda ASk0RkS
35 26 34 syldan ASkNRkS
36 1 2 3 4 5 algcvga ASkNCRk=0
37 36 imp ASkNCRk=0
38 fveqeq2 z=RkCz=0CRk=0
39 fveq2 z=RkFz=FRk
40 id z=Rkz=Rk
41 39 40 eqeq12d z=RkFz=zFRk=Rk
42 38 41 imbi12d z=RkCz=0Fz=zCRk=0FRk=Rk
43 42 6 vtoclga RkSCRk=0FRk=Rk
44 35 37 43 sylc ASkNFRk=Rk
45 32 44 eqtrd ASkNRk+1=Rk
46 45 eqeq1d ASkNRk+1=RNRk=RN
47 46 biimprd ASkNRk=RNRk+1=RN
48 47 expcom kNASRk=RNRk+1=RN
49 48 adantl NkNASRk=RNRk+1=RN
50 24 49 sylbir Nkz|NzASRk=RNRk+1=RN
51 50 a2d Nkz|NzASRk=RNASRk+1=RN
52 14 16 18 20 22 51 uzind3 NKz|NzASRK=RN
53 12 52 sylbi NKNASRK=RN
54 53 ex NKNASRK=RN
55 54 com3r ASNKNRK=RN
56 9 55 mpd ASKNRK=RN