Description: The sum of binomial coefficients for a fixed positive N with alternating signs is zero. Notice that this is not valid for N = 0 (since ( ( -u 1 ^ 0 ) x. ( 0 _C 0 ) ) = ( 1 x. 1 ) = 1 ). For a proof using Pascal's rule ( bcpascm1 ) instead of the binomial theorem ( binom ), see altgsumbcALT . (Contributed by AV, 13-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | altgsumbc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd | |
|
2 | negid | |
|
3 | 2 | eqcomd | |
4 | 1 3 | syl | |
5 | 4 | oveq1d | |
6 | 0exp | |
|
7 | 1 | negcld | |
8 | nnnn0 | |
|
9 | binom | |
|
10 | 1 7 8 9 | syl3anc | |
11 | nnz | |
|
12 | elfzelz | |
|
13 | zsubcl | |
|
14 | 11 12 13 | syl2an | |
15 | 1exp | |
|
16 | 14 15 | syl | |
17 | 16 | oveq1d | |
18 | neg1cn | |
|
19 | 18 | a1i | |
20 | elfznn0 | |
|
21 | expcl | |
|
22 | 19 20 21 | syl2an | |
23 | 22 | mullidd | |
24 | 17 23 | eqtrd | |
25 | 24 | oveq2d | |
26 | bccl | |
|
27 | 8 12 26 | syl2an | |
28 | 27 | nn0cnd | |
29 | 28 22 | mulcomd | |
30 | 25 29 | eqtrd | |
31 | 30 | sumeq2dv | |
32 | 10 31 | eqtrd | |
33 | 5 6 32 | 3eqtr3rd | |