| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1cnd |
|
| 2 |
|
negid |
|
| 3 |
2
|
eqcomd |
|
| 4 |
1 3
|
syl |
|
| 5 |
4
|
oveq1d |
|
| 6 |
|
0exp |
|
| 7 |
1
|
negcld |
|
| 8 |
|
nnnn0 |
|
| 9 |
|
binom |
|
| 10 |
1 7 8 9
|
syl3anc |
|
| 11 |
|
nnz |
|
| 12 |
|
elfzelz |
|
| 13 |
|
zsubcl |
|
| 14 |
11 12 13
|
syl2an |
|
| 15 |
|
1exp |
|
| 16 |
14 15
|
syl |
|
| 17 |
16
|
oveq1d |
|
| 18 |
|
neg1cn |
|
| 19 |
18
|
a1i |
|
| 20 |
|
elfznn0 |
|
| 21 |
|
expcl |
|
| 22 |
19 20 21
|
syl2an |
|
| 23 |
22
|
mullidd |
|
| 24 |
17 23
|
eqtrd |
|
| 25 |
24
|
oveq2d |
|
| 26 |
|
bccl |
|
| 27 |
8 12 26
|
syl2an |
|
| 28 |
27
|
nn0cnd |
|
| 29 |
28 22
|
mulcomd |
|
| 30 |
25 29
|
eqtrd |
|
| 31 |
30
|
sumeq2dv |
|
| 32 |
10 31
|
eqtrd |
|
| 33 |
5 6 32
|
3eqtr3rd |
|