Metamath Proof Explorer


Theorem altgsumbc

Description: The sum of binomial coefficients for a fixed positive N with alternating signs is zero. Notice that this is not valid for N = 0 (since ( ( -u 1 ^ 0 ) x. ( 0 _C 0 ) ) = ( 1 x. 1 ) = 1 ). For a proof using Pascal's rule ( bcpascm1 ) instead of the binomial theorem ( binom ), see altgsumbcALT . (Contributed by AV, 13-Sep-2019)

Ref Expression
Assertion altgsumbc Nk=0N1k(Nk)=0

Proof

Step Hyp Ref Expression
1 1cnd N1
2 negid 11+-1=0
3 2 eqcomd 10=1+-1
4 1 3 syl N0=1+-1
5 4 oveq1d N0N=1+-1N
6 0exp N0N=0
7 1 negcld N1
8 nnnn0 NN0
9 binom 11N01+-1N=k=0N(Nk)1Nk1k
10 1 7 8 9 syl3anc N1+-1N=k=0N(Nk)1Nk1k
11 nnz NN
12 elfzelz k0Nk
13 zsubcl NkNk
14 11 12 13 syl2an Nk0NNk
15 1exp Nk1Nk=1
16 14 15 syl Nk0N1Nk=1
17 16 oveq1d Nk0N1Nk1k=11k
18 neg1cn 1
19 18 a1i N1
20 elfznn0 k0Nk0
21 expcl 1k01k
22 19 20 21 syl2an Nk0N1k
23 22 mullidd Nk0N11k=1k
24 17 23 eqtrd Nk0N1Nk1k=1k
25 24 oveq2d Nk0N(Nk)1Nk1k=(Nk)1k
26 bccl N0k(Nk)0
27 8 12 26 syl2an Nk0N(Nk)0
28 27 nn0cnd Nk0N(Nk)
29 28 22 mulcomd Nk0N(Nk)1k=1k(Nk)
30 25 29 eqtrd Nk0N(Nk)1Nk1k=1k(Nk)
31 30 sumeq2dv Nk=0N(Nk)1Nk1k=k=0N1k(Nk)
32 10 31 eqtrd N1+-1N=k=0N1k(Nk)
33 5 6 32 3eqtr3rd Nk=0N1k(Nk)=0