| Step | Hyp | Ref | Expression | 
						
							| 1 |  | angpieqvdlem.A |  | 
						
							| 2 |  | angpieqvdlem.B |  | 
						
							| 3 |  | angpieqvdlem.C |  | 
						
							| 4 |  | angpieqvdlem.AneB |  | 
						
							| 5 |  | angpieqvdlem.AneC |  | 
						
							| 6 | 3 2 | subcld |  | 
						
							| 7 | 1 2 | subcld |  | 
						
							| 8 | 1 2 4 | subne0d |  | 
						
							| 9 | 6 7 8 | divcld |  | 
						
							| 10 | 9 | negcld |  | 
						
							| 11 |  | 1cnd |  | 
						
							| 12 | 5 | necomd |  | 
						
							| 13 | 3 1 2 12 | subneintr2d |  | 
						
							| 14 | 6 7 8 13 | divne1d |  | 
						
							| 15 | 9 11 14 | negned |  | 
						
							| 16 | 10 15 | xov1plusxeqvd |  | 
						
							| 17 | 6 7 8 | divnegd |  | 
						
							| 18 | 3 2 | negsubdi2d |  | 
						
							| 19 | 18 | oveq1d |  | 
						
							| 20 | 17 19 | eqtrd |  | 
						
							| 21 | 7 8 | dividd |  | 
						
							| 22 | 21 | oveq1d |  | 
						
							| 23 | 7 6 7 8 | divsubdird |  | 
						
							| 24 | 11 9 | negsubd |  | 
						
							| 25 | 22 23 24 | 3eqtr4rd |  | 
						
							| 26 | 1 3 2 | nnncan2d |  | 
						
							| 27 | 26 | oveq1d |  | 
						
							| 28 | 25 27 | eqtrd |  | 
						
							| 29 | 20 28 | oveq12d |  | 
						
							| 30 | 2 3 | subcld |  | 
						
							| 31 | 1 3 | subcld |  | 
						
							| 32 | 1 3 5 | subne0d |  | 
						
							| 33 | 30 31 7 32 8 | divcan7d |  | 
						
							| 34 | 2 3 1 3 5 | div2subd |  | 
						
							| 35 | 29 33 34 | 3eqtrrd |  | 
						
							| 36 | 35 | eleq1d |  | 
						
							| 37 | 16 36 | bitr4d |  |