Description: Equivalence used in the proof of angpieqvd . (Contributed by David Moews, 28-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | angpieqvdlem.A | |
|
angpieqvdlem.B | |
||
angpieqvdlem.C | |
||
angpieqvdlem.AneB | |
||
angpieqvdlem.AneC | |
||
Assertion | angpieqvdlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | angpieqvdlem.A | |
|
2 | angpieqvdlem.B | |
|
3 | angpieqvdlem.C | |
|
4 | angpieqvdlem.AneB | |
|
5 | angpieqvdlem.AneC | |
|
6 | 3 2 | subcld | |
7 | 1 2 | subcld | |
8 | 1 2 4 | subne0d | |
9 | 6 7 8 | divcld | |
10 | 9 | negcld | |
11 | 1cnd | |
|
12 | 5 | necomd | |
13 | 3 1 2 12 | subneintr2d | |
14 | 6 7 8 13 | divne1d | |
15 | 9 11 14 | negned | |
16 | 10 15 | xov1plusxeqvd | |
17 | 6 7 8 | divnegd | |
18 | 3 2 | negsubdi2d | |
19 | 18 | oveq1d | |
20 | 17 19 | eqtrd | |
21 | 7 8 | dividd | |
22 | 21 | oveq1d | |
23 | 7 6 7 8 | divsubdird | |
24 | 11 9 | negsubd | |
25 | 22 23 24 | 3eqtr4rd | |
26 | 1 3 2 | nnncan2d | |
27 | 26 | oveq1d | |
28 | 25 27 | eqtrd | |
29 | 20 28 | oveq12d | |
30 | 2 3 | subcld | |
31 | 1 3 | subcld | |
32 | 1 3 5 | subne0d | |
33 | 30 31 7 32 8 | divcan7d | |
34 | 2 3 1 3 5 | div2subd | |
35 | 29 33 34 | 3eqtrrd | |
36 | 35 | eleq1d | |
37 | 16 36 | bitr4d | |