Metamath Proof Explorer


Theorem angpieqvdlem

Description: Equivalence used in the proof of angpieqvd . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses angpieqvdlem.A φA
angpieqvdlem.B φB
angpieqvdlem.C φC
angpieqvdlem.AneB φAB
angpieqvdlem.AneC φAC
Assertion angpieqvdlem φCBAB+CBCA01

Proof

Step Hyp Ref Expression
1 angpieqvdlem.A φA
2 angpieqvdlem.B φB
3 angpieqvdlem.C φC
4 angpieqvdlem.AneB φAB
5 angpieqvdlem.AneC φAC
6 3 2 subcld φCB
7 1 2 subcld φAB
8 1 2 4 subne0d φAB0
9 6 7 8 divcld φCBAB
10 9 negcld φCBAB
11 1cnd φ1
12 5 necomd φCA
13 3 1 2 12 subneintr2d φCBAB
14 6 7 8 13 divne1d φCBAB1
15 9 11 14 negned φCBAB1
16 10 15 xov1plusxeqvd φCBAB+CBAB1+CBAB01
17 6 7 8 divnegd φCBAB=CBAB
18 3 2 negsubdi2d φCB=BC
19 18 oveq1d φCBAB=BCAB
20 17 19 eqtrd φCBAB=BCAB
21 7 8 dividd φABAB=1
22 21 oveq1d φABABCBAB=1CBAB
23 7 6 7 8 divsubdird φA-B-CBAB=ABABCBAB
24 11 9 negsubd φ1+CBAB=1CBAB
25 22 23 24 3eqtr4rd φ1+CBAB=A-B-CBAB
26 1 3 2 nnncan2d φA-B-CB=AC
27 26 oveq1d φA-B-CBAB=ACAB
28 25 27 eqtrd φ1+CBAB=ACAB
29 20 28 oveq12d φCBAB1+CBAB=BCABACAB
30 2 3 subcld φBC
31 1 3 subcld φAC
32 1 3 5 subne0d φAC0
33 30 31 7 32 8 divcan7d φBCABACAB=BCAC
34 2 3 1 3 5 div2subd φBCAC=CBCA
35 29 33 34 3eqtrrd φCBCA=CBAB1+CBAB
36 35 eleq1d φCBCA01CBAB1+CBAB01
37 16 36 bitr4d φCBAB+CBCA01