Metamath Proof Explorer


Theorem aspid

Description: The algebraic span of a subalgebra is itself. ( spanid analog.) (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a A=AlgSpanW
aspval.v V=BaseW
aspval.l L=LSubSpW
Assertion aspid WAssAlgSSubRingWSLAS=S

Proof

Step Hyp Ref Expression
1 aspval.a A=AlgSpanW
2 aspval.v V=BaseW
3 aspval.l L=LSubSpW
4 simp1 WAssAlgSSubRingWSLWAssAlg
5 2 subrgss SSubRingWSV
6 5 3ad2ant2 WAssAlgSSubRingWSLSV
7 1 2 3 aspval WAssAlgSVAS=tSubRingWL|St
8 4 6 7 syl2anc WAssAlgSSubRingWSLAS=tSubRingWL|St
9 3simpc WAssAlgSSubRingWSLSSubRingWSL
10 elin SSubRingWLSSubRingWSL
11 9 10 sylibr WAssAlgSSubRingWSLSSubRingWL
12 intmin SSubRingWLtSubRingWL|St=S
13 11 12 syl WAssAlgSSubRingWSLtSubRingWL|St=S
14 8 13 eqtrd WAssAlgSSubRingWSLAS=S