Metamath Proof Explorer


Theorem atcv1

Description: Two atoms covering the zero subspace are equal. (Contributed by NM, 26-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atcv1 ACBHAtomsCHAtomsABCA=0B=C

Proof

Step Hyp Ref Expression
1 breq1 A=0ABC0BC
2 atcv0eq BHAtomsCHAtoms0BCB=C
3 1 2 sylan9bbr BHAtomsCHAtomsA=0ABCB=C
4 3 biimpd BHAtomsCHAtomsA=0ABCB=C
5 4 ex BHAtomsCHAtomsA=0ABCB=C
6 5 com23 BHAtomsCHAtomsABCA=0B=C
7 6 3adant1 ACBHAtomsCHAtomsABCA=0B=C
8 7 imp ACBHAtomsCHAtomsABCA=0B=C
9 oveq1 B=CBC=CC
10 atelch CHAtomsCC
11 chjidm CCCC=C
12 10 11 syl CHAtomsCC=C
13 9 12 sylan9eq B=CCHAtomsBC=C
14 13 eqcomd B=CCHAtomsC=BC
15 14 eleq1d B=CCHAtomsCHAtomsBCHAtoms
16 15 ex B=CCHAtomsCHAtomsBCHAtoms
17 16 ibd B=CCHAtomsBCHAtoms
18 17 impcom CHAtomsB=CBCHAtoms
19 atcveq0 ACBCHAtomsABCA=0
20 18 19 sylan2 ACCHAtomsB=CABCA=0
21 20 biimpd ACCHAtomsB=CABCA=0
22 21 exp32 ACCHAtomsB=CABCA=0
23 22 com34 ACCHAtomsABCB=CA=0
24 23 imp ACCHAtomsABCB=CA=0
25 24 3adant2 ACBHAtomsCHAtomsABCB=CA=0
26 25 imp ACBHAtomsCHAtomsABCB=CA=0
27 8 26 impbid ACBHAtomsCHAtomsABCA=0B=C