Metamath Proof Explorer


Theorem atcvrj2b

Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012)

Ref Expression
Hypotheses atcvrj1x.l ˙=K
atcvrj1x.j ˙=joinK
atcvrj1x.c C=K
atcvrj1x.a A=AtomsK
Assertion atcvrj2b KHLPAQARAQRP˙Q˙RPCQ˙R

Proof

Step Hyp Ref Expression
1 atcvrj1x.l ˙=K
2 atcvrj1x.j ˙=joinK
3 atcvrj1x.c C=K
4 atcvrj1x.a A=AtomsK
5 simpl3l KHLPAQARAQRP˙Q˙RP=RQR
6 5 necomd KHLPAQARAQRP˙Q˙RP=RRQ
7 simpl1 KHLPAQARAQRP˙Q˙RP=RKHL
8 simpl23 KHLPAQARAQRP˙Q˙RP=RRA
9 simpl22 KHLPAQARAQRP˙Q˙RP=RQA
10 2 3 4 atcvr2 KHLRAQARQRCQ˙R
11 7 8 9 10 syl3anc KHLPAQARAQRP˙Q˙RP=RRQRCQ˙R
12 6 11 mpbid KHLPAQARAQRP˙Q˙RP=RRCQ˙R
13 breq1 P=RPCQ˙RRCQ˙R
14 13 adantl KHLPAQARAQRP˙Q˙RP=RPCQ˙RRCQ˙R
15 12 14 mpbird KHLPAQARAQRP˙Q˙RP=RPCQ˙R
16 simpl1 KHLPAQARAQRP˙Q˙RPRKHL
17 simpl2 KHLPAQARAQRP˙Q˙RPRPAQARA
18 simpr KHLPAQARAQRP˙Q˙RPRPR
19 simpl3r KHLPAQARAQRP˙Q˙RPRP˙Q˙R
20 1 2 3 4 atcvrj1 KHLPAQARAPRP˙Q˙RPCQ˙R
21 16 17 18 19 20 syl112anc KHLPAQARAQRP˙Q˙RPRPCQ˙R
22 15 21 pm2.61dane KHLPAQARAQRP˙Q˙RPCQ˙R
23 22 3expia KHLPAQARAQRP˙Q˙RPCQ˙R
24 hlatl KHLKAtLat
25 24 ad2antrr KHLPAQARAPCQ˙RKAtLat
26 simplr1 KHLPAQARAPCQ˙RPA
27 eqid 0.K=0.K
28 27 4 atn0 KAtLatPAP0.K
29 25 26 28 syl2anc KHLPAQARAPCQ˙RP0.K
30 simpll KHLPAQARAPCQ˙RKHL
31 eqid BaseK=BaseK
32 31 4 atbase PAPBaseK
33 26 32 syl KHLPAQARAPCQ˙RPBaseK
34 simplr2 KHLPAQARAPCQ˙RQA
35 simplr3 KHLPAQARAPCQ˙RRA
36 simpr KHLPAQARAPCQ˙RPCQ˙R
37 31 2 27 3 4 atcvrj0 KHLPBaseKQARAPCQ˙RP=0.KQ=R
38 30 33 34 35 36 37 syl131anc KHLPAQARAPCQ˙RP=0.KQ=R
39 38 necon3bid KHLPAQARAPCQ˙RP0.KQR
40 29 39 mpbid KHLPAQARAPCQ˙RQR
41 hllat KHLKLat
42 41 ad2antrr KHLPAQARAPCQ˙RKLat
43 31 4 atbase QAQBaseK
44 34 43 syl KHLPAQARAPCQ˙RQBaseK
45 31 4 atbase RARBaseK
46 35 45 syl KHLPAQARAPCQ˙RRBaseK
47 31 2 latjcl KLatQBaseKRBaseKQ˙RBaseK
48 42 44 46 47 syl3anc KHLPAQARAPCQ˙RQ˙RBaseK
49 30 33 48 3jca KHLPAQARAPCQ˙RKHLPBaseKQ˙RBaseK
50 31 1 3 cvrle KHLPBaseKQ˙RBaseKPCQ˙RP˙Q˙R
51 49 50 sylancom KHLPAQARAPCQ˙RP˙Q˙R
52 40 51 jca KHLPAQARAPCQ˙RQRP˙Q˙R
53 52 ex KHLPAQARAPCQ˙RQRP˙Q˙R
54 23 53 impbid KHLPAQARAQRP˙Q˙RPCQ˙R