Metamath Proof Explorer


Theorem axlowdim1

Description: The lower dimension axiom for one dimension. In any dimension, there are at least two distinct points. Theorem 3.13 of Schwabhauser p. 32, where it is derived from axlowdim2 . (Contributed by Scott Fenton, 22-Apr-2013)

Ref Expression
Assertion axlowdim1 N x 𝔼 N y 𝔼 N x y

Proof

Step Hyp Ref Expression
1 1re 1
2 1 fconst6 1 N × 1 : 1 N
3 elee N 1 N × 1 𝔼 N 1 N × 1 : 1 N
4 2 3 mpbiri N 1 N × 1 𝔼 N
5 0re 0
6 5 fconst6 1 N × 0 : 1 N
7 elee N 1 N × 0 𝔼 N 1 N × 0 : 1 N
8 6 7 mpbiri N 1 N × 0 𝔼 N
9 ax-1ne0 1 0
10 9 neii ¬ 1 = 0
11 1ex 1 V
12 11 sneqr 1 = 0 1 = 0
13 10 12 mto ¬ 1 = 0
14 elnnuz N N 1
15 eluzfz1 N 1 1 1 N
16 14 15 sylbi N 1 1 N
17 16 ne0d N 1 N
18 rnxp 1 N ran 1 N × 1 = 1
19 17 18 syl N ran 1 N × 1 = 1
20 rnxp 1 N ran 1 N × 0 = 0
21 17 20 syl N ran 1 N × 0 = 0
22 19 21 eqeq12d N ran 1 N × 1 = ran 1 N × 0 1 = 0
23 13 22 mtbiri N ¬ ran 1 N × 1 = ran 1 N × 0
24 rneq 1 N × 1 = 1 N × 0 ran 1 N × 1 = ran 1 N × 0
25 23 24 nsyl N ¬ 1 N × 1 = 1 N × 0
26 25 neqned N 1 N × 1 1 N × 0
27 neeq1 x = 1 N × 1 x y 1 N × 1 y
28 neeq2 y = 1 N × 0 1 N × 1 y 1 N × 1 1 N × 0
29 27 28 rspc2ev 1 N × 1 𝔼 N 1 N × 0 𝔼 N 1 N × 1 1 N × 0 x 𝔼 N y 𝔼 N x y
30 4 8 26 29 syl3anc N x 𝔼 N y 𝔼 N x y