Metamath Proof Explorer


Theorem axlowdimlem10

Description: Lemma for axlowdim . Set up a family of points in Euclidean space. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypothesis axlowdimlem10.1 Q=I+111NI+1×0
Assertion axlowdimlem10 NI1N1Q𝔼N

Proof

Step Hyp Ref Expression
1 axlowdimlem10.1 Q=I+111NI+1×0
2 ovex I+1V
3 1ex 1V
4 2 3 f1osn I+11:I+11-1 onto1
5 f1of I+11:I+11-1 onto1I+11:I+11
6 4 5 ax-mp I+11:I+11
7 c0ex 0V
8 7 fconst 1NI+1×0:1NI+10
9 6 8 pm3.2i I+11:I+111NI+1×0:1NI+10
10 disjdif I+11NI+1=
11 fun I+11:I+111NI+1×0:1NI+10I+11NI+1=I+111NI+1×0:I+11NI+110
12 9 10 11 mp2an I+111NI+1×0:I+11NI+110
13 1 feq1i Q:I+11NI+110I+111NI+1×0:I+11NI+110
14 12 13 mpbir Q:I+11NI+110
15 1re 1
16 snssi 11
17 15 16 ax-mp 1
18 0re 0
19 snssi 00
20 18 19 ax-mp 0
21 17 20 unssi 10
22 fss Q:I+11NI+11010Q:I+11NI+1
23 14 21 22 mp2an Q:I+11NI+1
24 fznatpl1 NI1N1I+11N
25 24 snssd NI1N1I+11N
26 undif I+11NI+11NI+1=1N
27 25 26 sylib NI1N1I+11NI+1=1N
28 27 feq2d NI1N1Q:I+11NI+1Q:1N
29 23 28 mpbii NI1N1Q:1N
30 elee NQ𝔼NQ:1N
31 30 adantr NI1N1Q𝔼NQ:1N
32 29 31 mpbird NI1N1Q𝔼N