Metamath Proof Explorer


Theorem axtgsegcon

Description: Axiom of segment construction, Axiom A4 of Schwabhauser p. 11. As discussed in Axiom 4 of Tarski1999 p. 178, "The intuitive content [is that] given any line segment A B , one can construct a line segment congruent to it, starting at any point Y and going in the direction of any ray containing Y . The ray is determined by the point Y and a second point X , the endpoint of the ray. The other endpoint of the line segment to be constructed is just the point z whose existence is asserted." (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses axtrkg.p P=BaseG
axtrkg.d -˙=distG
axtrkg.i I=ItvG
axtrkg.g φG𝒢Tarski
axtgsegcon.1 φXP
axtgsegcon.2 φYP
axtgsegcon.3 φAP
axtgsegcon.4 φBP
Assertion axtgsegcon φzPYXIzY-˙z=A-˙B

Proof

Step Hyp Ref Expression
1 axtrkg.p P=BaseG
2 axtrkg.d -˙=distG
3 axtrkg.i I=ItvG
4 axtrkg.g φG𝒢Tarski
5 axtgsegcon.1 φXP
6 axtgsegcon.2 φYP
7 axtgsegcon.3 φAP
8 axtgsegcon.4 φBP
9 df-trkg 𝒢Tarski=𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
10 inss2 𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
11 inss1 𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz𝒢TarskiCB
12 10 11 sstri 𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz𝒢TarskiCB
13 9 12 eqsstri 𝒢Tarski𝒢TarskiCB
14 13 4 sselid φG𝒢TarskiCB
15 1 2 3 istrkgcb G𝒢TarskiCBGVxPyPzPuPaPbPcPvPxyyxIzbaIcx-˙y=a-˙by-˙z=b-˙cx-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙vxPyPaPbPzPyxIzy-˙z=a-˙b
16 15 simprbi G𝒢TarskiCBxPyPzPuPaPbPcPvPxyyxIzbaIcx-˙y=a-˙by-˙z=b-˙cx-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙vxPyPaPbPzPyxIzy-˙z=a-˙b
17 16 simprd G𝒢TarskiCBxPyPaPbPzPyxIzy-˙z=a-˙b
18 14 17 syl φxPyPaPbPzPyxIzy-˙z=a-˙b
19 oveq1 x=XxIz=XIz
20 19 eleq2d x=XyxIzyXIz
21 20 anbi1d x=XyxIzy-˙z=a-˙byXIzy-˙z=a-˙b
22 21 rexbidv x=XzPyxIzy-˙z=a-˙bzPyXIzy-˙z=a-˙b
23 22 2ralbidv x=XaPbPzPyxIzy-˙z=a-˙baPbPzPyXIzy-˙z=a-˙b
24 eleq1 y=YyXIzYXIz
25 oveq1 y=Yy-˙z=Y-˙z
26 25 eqeq1d y=Yy-˙z=a-˙bY-˙z=a-˙b
27 24 26 anbi12d y=YyXIzy-˙z=a-˙bYXIzY-˙z=a-˙b
28 27 rexbidv y=YzPyXIzy-˙z=a-˙bzPYXIzY-˙z=a-˙b
29 28 2ralbidv y=YaPbPzPyXIzy-˙z=a-˙baPbPzPYXIzY-˙z=a-˙b
30 23 29 rspc2v XPYPxPyPaPbPzPyxIzy-˙z=a-˙baPbPzPYXIzY-˙z=a-˙b
31 5 6 30 syl2anc φxPyPaPbPzPyxIzy-˙z=a-˙baPbPzPYXIzY-˙z=a-˙b
32 18 31 mpd φaPbPzPYXIzY-˙z=a-˙b
33 oveq1 a=Aa-˙b=A-˙b
34 33 eqeq2d a=AY-˙z=a-˙bY-˙z=A-˙b
35 34 anbi2d a=AYXIzY-˙z=a-˙bYXIzY-˙z=A-˙b
36 35 rexbidv a=AzPYXIzY-˙z=a-˙bzPYXIzY-˙z=A-˙b
37 oveq2 b=BA-˙b=A-˙B
38 37 eqeq2d b=BY-˙z=A-˙bY-˙z=A-˙B
39 38 anbi2d b=BYXIzY-˙z=A-˙bYXIzY-˙z=A-˙B
40 39 rexbidv b=BzPYXIzY-˙z=A-˙bzPYXIzY-˙z=A-˙B
41 36 40 rspc2v APBPaPbPzPYXIzY-˙z=a-˙bzPYXIzY-˙z=A-˙B
42 7 8 41 syl2anc φaPbPzPYXIzY-˙z=a-˙bzPYXIzY-˙z=A-˙B
43 32 42 mpd φzPYXIzY-˙z=A-˙B