Metamath Proof Explorer


Theorem ballotlemrv2

Description: Value of R after the tie. (Contributed by Thierry Arnoux, 11-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
ballotth.r R=cOEScc
Assertion ballotlemrv2 COEJ1M+NIC<JJRCJC

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 ballotth.r R=cOEScc
11 1 2 3 4 5 6 7 8 9 10 ballotlemrv COEJ1M+NJRCifJICIC+1-JJC
12 11 3adant3 COEJ1M+NIC<JJRCifJICIC+1-JJC
13 fzssuz 1M+N1
14 uzssz 1
15 13 14 sstri 1M+N
16 1 2 3 4 5 6 7 8 ballotlemiex COEIC1M+NFCIC=0
17 16 simpld COEIC1M+N
18 15 17 sselid COEIC
19 18 adantr COEJ1M+NIC
20 19 zred COEJ1M+NIC
21 simpr COEJ1M+NJ1M+N
22 15 21 sselid COEJ1M+NJ
23 22 zred COEJ1M+NJ
24 20 23 ltnled COEJ1M+NIC<J¬JIC
25 24 biimp3a COEJ1M+NIC<J¬JIC
26 25 iffalsed COEJ1M+NIC<JifJICIC+1-JJ=J
27 26 eleq1d COEJ1M+NIC<JifJICIC+1-JJCJC
28 12 27 bitrd COEJ1M+NIC<JJRCJC