Metamath Proof Explorer


Theorem ballotlemscr

Description: The image of ( RC ) by ( SC ) . (Contributed by Thierry Arnoux, 21-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
ballotth.r R=cOEScc
Assertion ballotlemscr COESCRC=C

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 ballotth.r R=cOEScc
11 1 2 3 4 5 6 7 8 9 10 ballotlemrval COERC=SCC
12 11 imaeq2d COESCRC=SCSCC
13 1 2 3 4 5 6 7 8 9 ballotlemsf1o COESC:1M+N1-1 onto1M+NSC-1=SC
14 13 simprd COESC-1=SC
15 14 imaeq1d COESC-1SCC=SCSCC
16 13 simpld COESC:1M+N1-1 onto1M+N
17 f1of1 SC:1M+N1-1 onto1M+NSC:1M+N1-11M+N
18 16 17 syl COESC:1M+N1-11M+N
19 eldifi COECO
20 1 2 3 ballotlemelo COC1M+NC=M
21 20 simplbi COC1M+N
22 19 21 syl COEC1M+N
23 f1imacnv SC:1M+N1-11M+NC1M+NSC-1SCC=C
24 18 22 23 syl2anc COESC-1SCC=C
25 12 15 24 3eqtr2d COESCRC=C