Metamath Proof Explorer


Theorem ballotlemsgt1

Description: S maps values less than ( IC ) to values greater than 1. (Contributed by Thierry Arnoux, 28-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
Assertion ballotlemsgt1 COEJ1M+NJ<IC1<SCJ

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 elfzelz J1M+NJ
11 10 3ad2ant2 COEJ1M+NJ<ICJ
12 11 zred COEJ1M+NJ<ICJ
13 1 2 3 4 5 6 7 8 ballotlemiex COEIC1M+NFCIC=0
14 13 simpld COEIC1M+N
15 14 elfzelzd COEIC
16 15 3ad2ant1 COEJ1M+NJ<ICIC
17 16 zred COEJ1M+NJ<ICIC
18 1red COEJ1M+NJ<IC1
19 17 18 readdcld COEJ1M+NJ<ICIC+1
20 simp3 COEJ1M+NJ<ICJ<IC
21 16 zcnd COEJ1M+NJ<ICIC
22 1cnd COEJ1M+NJ<IC1
23 21 22 pncand COEJ1M+NJ<ICIC+1-1=IC
24 20 23 breqtrrd COEJ1M+NJ<ICJ<IC+1-1
25 12 19 18 24 ltsub13d COEJ1M+NJ<IC1<IC+1-J
26 1 2 3 4 5 6 7 8 9 ballotlemsv COEJ1M+NSCJ=ifJICIC+1-JJ
27 26 3adant3 COEJ1M+NJ<ICSCJ=ifJICIC+1-JJ
28 12 17 20 ltled COEJ1M+NJ<ICJIC
29 28 iftrued COEJ1M+NJ<ICifJICIC+1-JJ=IC+1-J
30 27 29 eqtrd COEJ1M+NJ<ICSCJ=IC+1-J
31 25 30 breqtrrd COEJ1M+NJ<IC1<SCJ