Metamath Proof Explorer


Theorem ballotlemsv

Description: Value of S evaluated at J for a given counting C . (Contributed by Thierry Arnoux, 12-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
Assertion ballotlemsv COEJ1M+NSCJ=ifJICIC+1-JJ

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 1 2 3 4 5 6 7 8 9 ballotlemsval COESC=i1M+NifiICIC+1-ii
11 breq1 i=jiICjIC
12 oveq2 i=jIC+1-i=IC+1-j
13 id i=ji=j
14 11 12 13 ifbieq12d i=jifiICIC+1-ii=ifjICIC+1-jj
15 14 cbvmptv i1M+NifiICIC+1-ii=j1M+NifjICIC+1-jj
16 10 15 eqtrdi COESC=j1M+NifjICIC+1-jj
17 16 adantr COEJ1M+NSC=j1M+NifjICIC+1-jj
18 simpr COEj=Jj=J
19 18 breq1d COEj=JjICJIC
20 18 oveq2d COEj=JIC+1-j=IC+1-J
21 19 20 18 ifbieq12d COEj=JifjICIC+1-jj=ifJICIC+1-JJ
22 21 adantlr COEJ1M+Nj=JifjICIC+1-jj=ifJICIC+1-JJ
23 simpr COEJ1M+NJ1M+N
24 ovexd COEJ1M+NJICIC+1-JV
25 elex J1M+NJV
26 25 ad2antlr COEJ1M+N¬JICJV
27 24 26 ifclda COEJ1M+NifJICIC+1-JJV
28 17 22 23 27 fvmptd COEJ1M+NSCJ=ifJICIC+1-JJ