Metamath Proof Explorer


Theorem bccm1k

Description: Generalized binomial coefficient: C choose ( K - 1 ) , when C is not ( K - 1 ) . (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses bccm1k.c φCK1
bccm1k.k φK
Assertion bccm1k φCC𝑐K1=CC𝑐KCK1K

Proof

Step Hyp Ref Expression
1 bccm1k.c φCK1
2 bccm1k.k φK
3 1 eldifad φC
4 2 nncnd φK
5 1cnd φ1
6 4 5 subcld φK1
7 3 6 subcld φCK1
8 2 nnne0d φK0
9 7 4 8 divcld φCK1K
10 nnm1nn0 KK10
11 2 10 syl φK10
12 3 11 bcccl φCC𝑐K1
13 eldifsni CK1CK1
14 1 13 syl φCK1
15 3 6 14 subne0d φCK10
16 7 4 15 8 divne0d φCK1K0
17 3 11 bccp1k φCC𝑐K-1+1=CC𝑐K1CK1K-1+1
18 4 5 npcand φK-1+1=K
19 18 oveq2d φCC𝑐K-1+1=CC𝑐K
20 18 oveq2d φCK1K-1+1=CK1K
21 20 oveq2d φCC𝑐K1CK1K-1+1=CC𝑐K1CK1K
22 17 19 21 3eqtr3d φCC𝑐K=CC𝑐K1CK1K
23 12 9 mulcomd φCC𝑐K1CK1K=CK1KCC𝑐K1
24 22 23 eqtr2d φCK1KCC𝑐K1=CC𝑐K
25 9 12 16 24 mvllmuld φCC𝑐K1=CC𝑐KCK1K