Metamath Proof Explorer


Theorem bcmax

Description: The binomial coefficient takes its maximum value at the center. (Contributed by Mario Carneiro, 5-Mar-2014)

Ref Expression
Assertion bcmax N0K(2 NK)(2 NN)

Proof

Step Hyp Ref Expression
1 2nn0 20
2 simpll N0KNKN0
3 nn0mulcl 20N02 N0
4 1 2 3 sylancr N0KNK2 N0
5 simpr N0KNKNK
6 nn0re N0N
7 6 leidd N0NN
8 nn0cn N0N
9 2cn 2
10 2ne0 20
11 divcan3 N2202 N2=N
12 9 10 11 mp3an23 N2 N2=N
13 8 12 syl N02 N2=N
14 7 13 breqtrrd N0N2 N2
15 2 14 syl N0KNKN2 N2
16 bcmono 2 N0NKN2 N2(2 NK)(2 NN)
17 4 5 15 16 syl3anc N0KNK(2 NK)(2 NN)
18 simpll N0KKNN0
19 1 18 3 sylancr N0KKN2 N0
20 simplr N0KKNK
21 bccmpl 2 N0K(2 NK)=(2 N2 NK)
22 19 20 21 syl2anc N0KKN(2 NK)=(2 N2 NK)
23 18 nn0red N0KKNN
24 23 recnd N0KKNN
25 24 2timesd N0KKN2 N=N+N
26 20 zred N0KKNK
27 eluzle KNNK
28 27 adantl N0KKNNK
29 23 26 23 28 leadd2dd N0KKNN+NN+K
30 25 29 eqbrtrd N0KKN2 NN+K
31 19 nn0red N0KKN2 N
32 31 26 23 lesubaddd N0KKN2 NKN2 NN+K
33 30 32 mpbird N0KKN2 NKN
34 19 nn0zd N0KKN2 N
35 34 20 zsubcld N0KKN2 NK
36 18 nn0zd N0KKNN
37 eluz 2 NKNN2 NK2 NKN
38 35 36 37 syl2anc N0KKNN2 NK2 NKN
39 33 38 mpbird N0KKNN2 NK
40 18 14 syl N0KKNN2 N2
41 bcmono 2 N0N2 NKN2 N2(2 N2 NK)(2 NN)
42 19 39 40 41 syl3anc N0KKN(2 N2 NK)(2 NN)
43 22 42 eqbrtrd N0KKN(2 NK)(2 NN)
44 simpr N0KK
45 nn0z N0N
46 45 adantr N0KN
47 uztric KNNKKN
48 44 46 47 syl2anc N0KNKKN
49 17 43 48 mpjaodan N0K(2 NK)(2 NN)