Metamath Proof Explorer


Theorem bcn2

Description: Binomial coefficient: N choose 2 . (Contributed by Mario Carneiro, 22-May-2014)

Ref Expression
Assertion bcn2 N 0 ( N 2 ) = N N 1 2

Proof

Step Hyp Ref Expression
1 2nn 2
2 bcval5 N 0 2 ( N 2 ) = seq N - 2 + 1 × I N 2 !
3 1 2 mpan2 N 0 ( N 2 ) = seq N - 2 + 1 × I N 2 !
4 2m1e1 2 1 = 1
5 4 oveq2i N 2 + 2 - 1 = N - 2 + 1
6 nn0cn N 0 N
7 2cn 2
8 ax-1cn 1
9 npncan N 2 1 N 2 + 2 - 1 = N 1
10 7 8 9 mp3an23 N N 2 + 2 - 1 = N 1
11 6 10 syl N 0 N 2 + 2 - 1 = N 1
12 5 11 eqtr3id N 0 N - 2 + 1 = N 1
13 12 seqeq1d N 0 seq N - 2 + 1 × I = seq N 1 × I
14 13 fveq1d N 0 seq N - 2 + 1 × I N = seq N 1 × I N
15 nn0z N 0 N
16 peano2zm N N 1
17 15 16 syl N 0 N 1
18 uzid N N N
19 15 18 syl N 0 N N
20 npcan N 1 N - 1 + 1 = N
21 6 8 20 sylancl N 0 N - 1 + 1 = N
22 21 fveq2d N 0 N - 1 + 1 = N
23 19 22 eleqtrrd N 0 N N - 1 + 1
24 seqm1 N 1 N N - 1 + 1 seq N 1 × I N = seq N 1 × I N 1 I N
25 17 23 24 syl2anc N 0 seq N 1 × I N = seq N 1 × I N 1 I N
26 seq1 N 1 seq N 1 × I N 1 = I N 1
27 17 26 syl N 0 seq N 1 × I N 1 = I N 1
28 fvi N 1 I N 1 = N 1
29 17 28 syl N 0 I N 1 = N 1
30 27 29 eqtrd N 0 seq N 1 × I N 1 = N 1
31 fvi N 0 I N = N
32 30 31 oveq12d N 0 seq N 1 × I N 1 I N = N 1 N
33 25 32 eqtrd N 0 seq N 1 × I N = N 1 N
34 subcl N 1 N 1
35 6 8 34 sylancl N 0 N 1
36 35 6 mulcomd N 0 N 1 N = N N 1
37 33 36 eqtrd N 0 seq N 1 × I N = N N 1
38 14 37 eqtrd N 0 seq N - 2 + 1 × I N = N N 1
39 fac2 2 ! = 2
40 39 a1i N 0 2 ! = 2
41 38 40 oveq12d N 0 seq N - 2 + 1 × I N 2 ! = N N 1 2
42 3 41 eqtrd N 0 ( N 2 ) = N N 1 2