Metamath Proof Explorer


Theorem bcn2

Description: Binomial coefficient: N choose 2 . (Contributed by Mario Carneiro, 22-May-2014)

Ref Expression
Assertion bcn2 N0(N2)=NN12

Proof

Step Hyp Ref Expression
1 2nn 2
2 bcval5 N02(N2)=seqN-2+1×IN2!
3 1 2 mpan2 N0(N2)=seqN-2+1×IN2!
4 2m1e1 21=1
5 4 oveq2i N2+2-1=N-2+1
6 nn0cn N0N
7 2cn 2
8 ax-1cn 1
9 npncan N21N2+2-1=N1
10 7 8 9 mp3an23 NN2+2-1=N1
11 6 10 syl N0N2+2-1=N1
12 5 11 eqtr3id N0N-2+1=N1
13 12 seqeq1d N0seqN-2+1×I=seqN1×I
14 13 fveq1d N0seqN-2+1×IN=seqN1×IN
15 nn0z N0N
16 peano2zm NN1
17 15 16 syl N0N1
18 uzid NNN
19 15 18 syl N0NN
20 npcan N1N-1+1=N
21 6 8 20 sylancl N0N-1+1=N
22 21 fveq2d N0N-1+1=N
23 19 22 eleqtrrd N0NN-1+1
24 seqm1 N1NN-1+1seqN1×IN=seqN1×IN1IN
25 17 23 24 syl2anc N0seqN1×IN=seqN1×IN1IN
26 seq1 N1seqN1×IN1=IN1
27 17 26 syl N0seqN1×IN1=IN1
28 fvi N1IN1=N1
29 17 28 syl N0IN1=N1
30 27 29 eqtrd N0seqN1×IN1=N1
31 fvi N0IN=N
32 30 31 oveq12d N0seqN1×IN1IN=N1 N
33 25 32 eqtrd N0seqN1×IN=N1 N
34 subcl N1N1
35 6 8 34 sylancl N0N1
36 35 6 mulcomd N0N1 N=NN1
37 33 36 eqtrd N0seqN1×IN=NN1
38 14 37 eqtrd N0seqN-2+1×IN=NN1
39 fac2 2!=2
40 39 a1i N02!=2
41 38 40 oveq12d N0seqN-2+1×IN2!=NN12
42 3 41 eqtrd N0(N2)=NN12