Metamath Proof Explorer


Theorem bcp1ctr

Description: Ratio of two central binomial coefficients. (Contributed by Mario Carneiro, 10-Mar-2014)

Ref Expression
Assertion bcp1ctr N0(2N+1N+1)=(2 NN)22 N+1N+1

Proof

Step Hyp Ref Expression
1 2t1e2 21=2
2 df-2 2=1+1
3 1 2 eqtri 21=1+1
4 3 oveq2i 2 N+21=2 N+1+1
5 nn0cn N0N
6 2cn 2
7 ax-1cn 1
8 adddi 2N12N+1=2 N+21
9 6 7 8 mp3an13 N2N+1=2 N+21
10 5 9 syl N02N+1=2 N+21
11 2nn0 20
12 nn0mulcl 20N02 N0
13 11 12 mpan N02 N0
14 13 nn0cnd N02 N
15 addass 2 N112 N+1+1=2 N+1+1
16 7 7 15 mp3an23 2 N2 N+1+1=2 N+1+1
17 14 16 syl N02 N+1+1=2 N+1+1
18 4 10 17 3eqtr4a N02N+1=2 N+1+1
19 18 oveq1d N0(2N+1N+1)=(2 N+1+1N+1)
20 peano2nn0 2 N02 N+10
21 13 20 syl N02 N+10
22 nn0p1nn N0N+1
23 22 nnzd N0N+1
24 bcpasc 2 N+10N+1(2 N+1N+1)+(2 N+1N+1-1)=(2 N+1+1N+1)
25 21 23 24 syl2anc N0(2 N+1N+1)+(2 N+1N+1-1)=(2 N+1+1N+1)
26 19 25 eqtr4d N0(2N+1N+1)=(2 N+1N+1)+(2 N+1N+1-1)
27 nn0z N0N
28 bccl 2 N0N(2 NN)0
29 13 27 28 syl2anc N0(2 NN)0
30 29 nn0cnd N0(2 NN)
31 2cnd N02
32 21 nn0red N02 N+1
33 32 22 nndivred N02 N+1N+1
34 33 recnd N02 N+1N+1
35 30 31 34 mul12d N0(2 NN)22 N+1N+1=2(2 NN)2 N+1N+1
36 1cnd N01
37 14 36 5 addsubd N02 N+1-N=2 N-N+1
38 5 2timesd N02 N=N+N
39 5 5 38 mvrladdd N02 NN=N
40 39 oveq1d N02 N-N+1=N+1
41 37 40 eqtr2d N0N+1=2 N+1-N
42 41 oveq2d N02 N+1N+1=2 N+12 N+1-N
43 42 oveq2d N0(2 NN)2 N+1N+1=(2 NN)2 N+12 N+1-N
44 fzctr N0N02 N
45 bcp1n N02 N(2 N+1N)=(2 NN)2 N+12 N+1-N
46 44 45 syl N0(2 N+1N)=(2 NN)2 N+12 N+1-N
47 43 46 eqtr4d N0(2 NN)2 N+1N+1=(2 N+1N)
48 47 oveq2d N02(2 NN)2 N+1N+1=2(2 N+1N)
49 35 48 eqtrd N0(2 NN)22 N+1N+1=2(2 N+1N)
50 bccmpl 2 N+10N+1(2 N+1N+1)=(2 N+12 N+1-N+1)
51 21 23 50 syl2anc N0(2 N+1N+1)=(2 N+12 N+1-N+1)
52 22 nncnd N0N+1
53 38 oveq1d N02 N+1=N+N+1
54 5 5 36 addassd N0N+N+1=N+N+1
55 53 54 eqtrd N02 N+1=N+N+1
56 5 52 55 mvrraddd N02 N+1-N+1=N
57 56 oveq2d N0(2 N+12 N+1-N+1)=(2 N+1N)
58 51 57 eqtrd N0(2 N+1N+1)=(2 N+1N)
59 pncan N1N+1-1=N
60 5 7 59 sylancl N0N+1-1=N
61 60 oveq2d N0(2 N+1N+1-1)=(2 N+1N)
62 58 61 oveq12d N0(2 N+1N+1)+(2 N+1N+1-1)=(2 N+1N)+(2 N+1N)
63 bccl 2 N+10N(2 N+1N)0
64 21 27 63 syl2anc N0(2 N+1N)0
65 64 nn0cnd N0(2 N+1N)
66 65 2timesd N02(2 N+1N)=(2 N+1N)+(2 N+1N)
67 62 66 eqtr4d N0(2 N+1N+1)+(2 N+1N+1-1)=2(2 N+1N)
68 49 67 eqtr4d N0(2 NN)22 N+1N+1=(2 N+1N+1)+(2 N+1N+1-1)
69 26 68 eqtr4d N0(2N+1N+1)=(2 NN)22 N+1N+1