Metamath Proof Explorer


Theorem bcp1n

Description: The proportion of one binomial coefficient to another with N increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014)

Ref Expression
Assertion bcp1n K0N(N+1K)=(NK)N+1N+1-K

Proof

Step Hyp Ref Expression
1 elfz3nn0 K0NN0
2 facp1 N0N+1!=N!N+1
3 1 2 syl K0NN+1!=N!N+1
4 fznn0sub K0NNK0
5 facp1 NK0N-K+1!=NK!N-K+1
6 4 5 syl K0NN-K+1!=NK!N-K+1
7 1 nn0cnd K0NN
8 1cnd K0N1
9 elfznn0 K0NK0
10 9 nn0cnd K0NK
11 7 8 10 addsubd K0NN+1-K=N-K+1
12 11 fveq2d K0NN+1-K!=N-K+1!
13 11 oveq2d K0NNK!N+1-K=NK!N-K+1
14 6 12 13 3eqtr4d K0NN+1-K!=NK!N+1-K
15 14 oveq1d K0NN+1-K!K!=NK!N+1-KK!
16 4 faccld K0NNK!
17 16 nncnd K0NNK!
18 nn0p1nn NK0N-K+1
19 4 18 syl K0NN-K+1
20 11 19 eqeltrd K0NN+1-K
21 20 nncnd K0NN+1-K
22 9 faccld K0NK!
23 22 nncnd K0NK!
24 17 21 23 mul32d K0NNK!N+1-KK!=NK!K!N+1-K
25 15 24 eqtrd K0NN+1-K!K!=NK!K!N+1-K
26 3 25 oveq12d K0NN+1!N+1-K!K!=N!N+1NK!K!N+1-K
27 1 faccld K0NN!
28 27 nncnd K0NN!
29 nn0p1nn N0N+1
30 1 29 syl K0NN+1
31 30 nncnd K0NN+1
32 16 22 nnmulcld K0NNK!K!
33 nncn NK!K!NK!K!
34 nnne0 NK!K!NK!K!0
35 33 34 jca NK!K!NK!K!NK!K!0
36 32 35 syl K0NNK!K!NK!K!0
37 20 nnne0d K0NN+1-K0
38 21 37 jca K0NN+1-KN+1-K0
39 divmuldiv N!N+1NK!K!NK!K!0N+1-KN+1-K0N!NK!K!N+1N+1-K=N!N+1NK!K!N+1-K
40 28 31 36 38 39 syl22anc K0NN!NK!K!N+1N+1-K=N!N+1NK!K!N+1-K
41 26 40 eqtr4d K0NN+1!N+1-K!K!=N!NK!K!N+1N+1-K
42 fzelp1 K0NK0N+1
43 bcval2 K0N+1(N+1K)=N+1!N+1-K!K!
44 42 43 syl K0N(N+1K)=N+1!N+1-K!K!
45 bcval2 K0N(NK)=N!NK!K!
46 45 oveq1d K0N(NK)N+1N+1-K=N!NK!K!N+1N+1-K
47 41 44 46 3eqtr4d K0N(N+1K)=(NK)N+1N+1-K