Metamath Proof Explorer


Theorem bcp1nk

Description: The proportion of one binomial coefficient to another with N and K increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Assertion bcp1nk K 0 N ( N + 1 K + 1 ) = ( N K) N + 1 K + 1

Proof

Step Hyp Ref Expression
1 elfzel1 K 0 N 0
2 elfzel2 K 0 N N
3 elfzelz K 0 N K
4 1zzd K 0 N 1
5 fzaddel 0 N K 1 K 0 N K + 1 0 + 1 N + 1
6 1 2 3 4 5 syl22anc K 0 N K 0 N K + 1 0 + 1 N + 1
7 6 ibi K 0 N K + 1 0 + 1 N + 1
8 1e0p1 1 = 0 + 1
9 8 oveq1i 1 N + 1 = 0 + 1 N + 1
10 7 9 eleqtrrdi K 0 N K + 1 1 N + 1
11 bcm1k K + 1 1 N + 1 ( N + 1 K + 1 ) = ( N + 1 K + 1 - 1 ) N + 1 - K + 1 - 1 K + 1
12 10 11 syl K 0 N ( N + 1 K + 1 ) = ( N + 1 K + 1 - 1 ) N + 1 - K + 1 - 1 K + 1
13 3 zcnd K 0 N K
14 ax-1cn 1
15 pncan K 1 K + 1 - 1 = K
16 13 14 15 sylancl K 0 N K + 1 - 1 = K
17 16 oveq2d K 0 N ( N + 1 K + 1 - 1 ) = ( N + 1 K)
18 bcp1n K 0 N ( N + 1 K) = ( N K) N + 1 N + 1 - K
19 17 18 eqtrd K 0 N ( N + 1 K + 1 - 1 ) = ( N K) N + 1 N + 1 - K
20 16 oveq2d K 0 N N + 1 - K + 1 - 1 = N + 1 - K
21 20 oveq1d K 0 N N + 1 - K + 1 - 1 K + 1 = N + 1 - K K + 1
22 19 21 oveq12d K 0 N ( N + 1 K + 1 - 1 ) N + 1 - K + 1 - 1 K + 1 = ( N K) N + 1 N + 1 - K N + 1 - K K + 1
23 bcrpcl K 0 N ( N K) +
24 23 rpcnd K 0 N ( N K)
25 2 peano2zd K 0 N N + 1
26 25 zred K 0 N N + 1
27 3 zred K 0 N K
28 2 zred K 0 N N
29 elfzle2 K 0 N K N
30 28 ltp1d K 0 N N < N + 1
31 27 28 26 29 30 lelttrd K 0 N K < N + 1
32 znnsub K N + 1 K < N + 1 N + 1 - K
33 3 25 32 syl2anc K 0 N K < N + 1 N + 1 - K
34 31 33 mpbid K 0 N N + 1 - K
35 26 34 nndivred K 0 N N + 1 N + 1 - K
36 35 recnd K 0 N N + 1 N + 1 - K
37 34 nnred K 0 N N + 1 - K
38 elfznn0 K 0 N K 0
39 nn0p1nn K 0 K + 1
40 38 39 syl K 0 N K + 1
41 37 40 nndivred K 0 N N + 1 - K K + 1
42 41 recnd K 0 N N + 1 - K K + 1
43 24 36 42 mulassd K 0 N ( N K) N + 1 N + 1 - K N + 1 - K K + 1 = ( N K) N + 1 N + 1 - K N + 1 - K K + 1
44 25 zcnd K 0 N N + 1
45 34 nncnd K 0 N N + 1 - K
46 40 nncnd K 0 N K + 1
47 34 nnne0d K 0 N N + 1 - K 0
48 40 nnne0d K 0 N K + 1 0
49 44 45 46 47 48 dmdcan2d K 0 N N + 1 N + 1 - K N + 1 - K K + 1 = N + 1 K + 1
50 49 oveq2d K 0 N ( N K) N + 1 N + 1 - K N + 1 - K K + 1 = ( N K) N + 1 K + 1
51 43 50 eqtrd K 0 N ( N K) N + 1 N + 1 - K N + 1 - K K + 1 = ( N K) N + 1 K + 1
52 22 51 eqtrd K 0 N ( N + 1 K + 1 - 1 ) N + 1 - K + 1 - 1 K + 1 = ( N K) N + 1 K + 1
53 12 52 eqtrd K 0 N ( N + 1 K + 1 ) = ( N K) N + 1 K + 1