Metamath Proof Explorer


Theorem bgoldbtbndlem1

Description: Lemma 1 for bgoldbtbnd : the odd numbers between 7 and 13 (exclusive) are odd Goldbach numbers. (Contributed by AV, 29-Jul-2020)

Ref Expression
Assertion bgoldbtbndlem1 N Odd 7 < N N 7 13 N GoldbachOdd

Proof

Step Hyp Ref Expression
1 7re 7
2 1 rexri 7 *
3 1nn0 1 0
4 3nn 3
5 3 4 decnncl 13
6 5 nnrei 13
7 6 rexri 13 *
8 elico1 7 * 13 * N 7 13 N * 7 N N < 13
9 2 7 8 mp2an N 7 13 N * 7 N N < 13
10 7nn 7
11 10 nnzi 7
12 oddz N Odd N
13 zltp1le 7 N 7 < N 7 + 1 N
14 7p1e8 7 + 1 = 8
15 14 breq1i 7 + 1 N 8 N
16 15 a1i 7 N 7 + 1 N 8 N
17 8re 8
18 17 a1i 7 8
19 zre N N
20 leloe 8 N 8 N 8 < N 8 = N
21 18 19 20 syl2an 7 N 8 N 8 < N 8 = N
22 13 16 21 3bitrd 7 N 7 < N 8 < N 8 = N
23 11 12 22 sylancr N Odd 7 < N 8 < N 8 = N
24 8nn 8
25 24 nnzi 8
26 zltp1le 8 N 8 < N 8 + 1 N
27 25 12 26 sylancr N Odd 8 < N 8 + 1 N
28 8p1e9 8 + 1 = 9
29 28 breq1i 8 + 1 N 9 N
30 29 a1i N Odd 8 + 1 N 9 N
31 9re 9
32 31 a1i N Odd 9
33 12 zred N Odd N
34 32 33 leloed N Odd 9 N 9 < N 9 = N
35 27 30 34 3bitrd N Odd 8 < N 9 < N 9 = N
36 9nn 9
37 36 nnzi 9
38 zltp1le 9 N 9 < N 9 + 1 N
39 37 12 38 sylancr N Odd 9 < N 9 + 1 N
40 9p1e10 9 + 1 = 10
41 40 breq1i 9 + 1 N 10 N
42 41 a1i N Odd 9 + 1 N 10 N
43 10re 10
44 43 a1i N Odd 10
45 44 33 leloed N Odd 10 N 10 < N 10 = N
46 39 42 45 3bitrd N Odd 9 < N 10 < N 10 = N
47 10nn 10
48 47 nnzi 10
49 zltp1le 10 N 10 < N 10 + 1 N
50 48 12 49 sylancr N Odd 10 < N 10 + 1 N
51 dec10p 10 + 1 = 11
52 51 breq1i 10 + 1 N 11 N
53 52 a1i N Odd 10 + 1 N 11 N
54 1nn 1
55 3 54 decnncl 11
56 55 nnrei 11
57 56 a1i N Odd 11
58 57 33 leloed N Odd 11 N 11 < N 11 = N
59 50 53 58 3bitrd N Odd 10 < N 11 < N 11 = N
60 55 nnzi 11
61 zltp1le 11 N 11 < N 11 + 1 N
62 60 12 61 sylancr N Odd 11 < N 11 + 1 N
63 51 eqcomi 11 = 10 + 1
64 63 oveq1i 11 + 1 = 10 + 1 + 1
65 47 nncni 10
66 ax-1cn 1
67 65 66 66 addassi 10 + 1 + 1 = 10 + 1 + 1
68 1p1e2 1 + 1 = 2
69 68 oveq2i 10 + 1 + 1 = 10 + 2
70 dec10p 10 + 2 = 12
71 69 70 eqtri 10 + 1 + 1 = 12
72 64 67 71 3eqtri 11 + 1 = 12
73 72 breq1i 11 + 1 N 12 N
74 73 a1i N Odd 11 + 1 N 12 N
75 2nn 2
76 3 75 decnncl 12
77 76 nnrei 12
78 77 a1i N Odd 12
79 78 33 leloed N Odd 12 N 12 < N 12 = N
80 62 74 79 3bitrd N Odd 11 < N 12 < N 12 = N
81 76 nnzi 12
82 zltp1le 12 N 12 < N 12 + 1 N
83 81 12 82 sylancr N Odd 12 < N 12 + 1 N
84 70 eqcomi 12 = 10 + 2
85 84 oveq1i 12 + 1 = 10 + 2 + 1
86 2cn 2
87 65 86 66 addassi 10 + 2 + 1 = 10 + 2 + 1
88 2p1e3 2 + 1 = 3
89 88 oveq2i 10 + 2 + 1 = 10 + 3
90 dec10p 10 + 3 = 13
91 89 90 eqtri 10 + 2 + 1 = 13
92 85 87 91 3eqtri 12 + 1 = 13
93 92 breq1i 12 + 1 N 13 N
94 93 a1i N Odd 12 + 1 N 13 N
95 6 a1i N Odd 13
96 95 33 lenltd N Odd 13 N ¬ N < 13
97 83 94 96 3bitrd N Odd 12 < N ¬ N < 13
98 pm2.21 ¬ N < 13 N < 13 N GoldbachOdd
99 97 98 syl6bi N Odd 12 < N N < 13 N GoldbachOdd
100 99 com12 12 < N N Odd N < 13 N GoldbachOdd
101 eleq1 12 = N 12 Odd N Odd
102 6p6e12 6 + 6 = 12
103 6even 6 Even
104 epee 6 Even 6 Even 6 + 6 Even
105 103 103 104 mp2an 6 + 6 Even
106 102 105 eqeltrri 12 Even
107 evennodd 12 Even ¬ 12 Odd
108 106 107 ax-mp ¬ 12 Odd
109 108 pm2.21i 12 Odd N < 13 N GoldbachOdd
110 101 109 syl6bir 12 = N N Odd N < 13 N GoldbachOdd
111 100 110 jaoi 12 < N 12 = N N Odd N < 13 N GoldbachOdd
112 111 com12 N Odd 12 < N 12 = N N < 13 N GoldbachOdd
113 80 112 sylbid N Odd 11 < N N < 13 N GoldbachOdd
114 113 com12 11 < N N Odd N < 13 N GoldbachOdd
115 11gbo 11 GoldbachOdd
116 eleq1 11 = N 11 GoldbachOdd N GoldbachOdd
117 115 116 mpbii 11 = N N GoldbachOdd
118 117 2a1d 11 = N N Odd N < 13 N GoldbachOdd
119 114 118 jaoi 11 < N 11 = N N Odd N < 13 N GoldbachOdd
120 119 com12 N Odd 11 < N 11 = N N < 13 N GoldbachOdd
121 59 120 sylbid N Odd 10 < N N < 13 N GoldbachOdd
122 121 com12 10 < N N Odd N < 13 N GoldbachOdd
123 eleq1 10 = N 10 Odd N Odd
124 5p5e10 5 + 5 = 10
125 5odd 5 Odd
126 opoeALTV 5 Odd 5 Odd 5 + 5 Even
127 125 125 126 mp2an 5 + 5 Even
128 124 127 eqeltrri 10 Even
129 evennodd 10 Even ¬ 10 Odd
130 128 129 ax-mp ¬ 10 Odd
131 130 pm2.21i 10 Odd N < 13 N GoldbachOdd
132 123 131 syl6bir 10 = N N Odd N < 13 N GoldbachOdd
133 122 132 jaoi 10 < N 10 = N N Odd N < 13 N GoldbachOdd
134 133 com12 N Odd 10 < N 10 = N N < 13 N GoldbachOdd
135 46 134 sylbid N Odd 9 < N N < 13 N GoldbachOdd
136 135 com12 9 < N N Odd N < 13 N GoldbachOdd
137 9gbo 9 GoldbachOdd
138 eleq1 9 = N 9 GoldbachOdd N GoldbachOdd
139 137 138 mpbii 9 = N N GoldbachOdd
140 139 2a1d 9 = N N Odd N < 13 N GoldbachOdd
141 136 140 jaoi 9 < N 9 = N N Odd N < 13 N GoldbachOdd
142 141 com12 N Odd 9 < N 9 = N N < 13 N GoldbachOdd
143 35 142 sylbid N Odd 8 < N N < 13 N GoldbachOdd
144 143 com12 8 < N N Odd N < 13 N GoldbachOdd
145 eleq1 8 = N 8 Odd N Odd
146 8even 8 Even
147 evennodd 8 Even ¬ 8 Odd
148 146 147 ax-mp ¬ 8 Odd
149 148 pm2.21i 8 Odd N < 13 N GoldbachOdd
150 145 149 syl6bir 8 = N N Odd N < 13 N GoldbachOdd
151 144 150 jaoi 8 < N 8 = N N Odd N < 13 N GoldbachOdd
152 151 com12 N Odd 8 < N 8 = N N < 13 N GoldbachOdd
153 23 152 sylbid N Odd 7 < N N < 13 N GoldbachOdd
154 153 imp N Odd 7 < N N < 13 N GoldbachOdd
155 154 com12 N < 13 N Odd 7 < N N GoldbachOdd
156 155 3ad2ant3 N * 7 N N < 13 N Odd 7 < N N GoldbachOdd
157 156 com12 N Odd 7 < N N * 7 N N < 13 N GoldbachOdd
158 9 157 syl5bi N Odd 7 < N N 7 13 N GoldbachOdd
159 158 3impia N Odd 7 < N N 7 13 N GoldbachOdd