| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
oveq2 |
|
| 3 |
|
oveq1 |
|
| 4 |
|
oveq1 |
|
| 5 |
4
|
oveq2d |
|
| 6 |
5
|
oveq1d |
|
| 7 |
3 6
|
oveq12d |
|
| 8 |
7
|
adantr |
|
| 9 |
2 8
|
sumeq12dv |
|
| 10 |
1 9
|
eqeq12d |
|
| 11 |
10
|
imbi2d |
|
| 12 |
|
oveq2 |
|
| 13 |
|
oveq2 |
|
| 14 |
|
oveq1 |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
oveq2d |
|
| 17 |
16
|
oveq1d |
|
| 18 |
14 17
|
oveq12d |
|
| 19 |
18
|
adantr |
|
| 20 |
13 19
|
sumeq12dv |
|
| 21 |
12 20
|
eqeq12d |
|
| 22 |
21
|
imbi2d |
|
| 23 |
|
oveq2 |
|
| 24 |
|
oveq2 |
|
| 25 |
|
oveq1 |
|
| 26 |
|
oveq1 |
|
| 27 |
26
|
oveq2d |
|
| 28 |
27
|
oveq1d |
|
| 29 |
25 28
|
oveq12d |
|
| 30 |
29
|
adantr |
|
| 31 |
24 30
|
sumeq12dv |
|
| 32 |
23 31
|
eqeq12d |
|
| 33 |
32
|
imbi2d |
|
| 34 |
|
oveq2 |
|
| 35 |
|
oveq2 |
|
| 36 |
|
oveq1 |
|
| 37 |
|
oveq1 |
|
| 38 |
37
|
oveq2d |
|
| 39 |
38
|
oveq1d |
|
| 40 |
36 39
|
oveq12d |
|
| 41 |
40
|
adantr |
|
| 42 |
35 41
|
sumeq12dv |
|
| 43 |
34 42
|
eqeq12d |
|
| 44 |
43
|
imbi2d |
|
| 45 |
|
exp0 |
|
| 46 |
|
exp0 |
|
| 47 |
45 46
|
oveqan12d |
|
| 48 |
|
1t1e1 |
|
| 49 |
47 48
|
eqtrdi |
|
| 50 |
49
|
oveq2d |
|
| 51 |
50 48
|
eqtrdi |
|
| 52 |
|
0z |
|
| 53 |
|
ax-1cn |
|
| 54 |
51 53
|
eqeltrdi |
|
| 55 |
|
oveq2 |
|
| 56 |
|
0nn0 |
|
| 57 |
|
bcn0 |
|
| 58 |
56 57
|
ax-mp |
|
| 59 |
55 58
|
eqtrdi |
|
| 60 |
|
oveq2 |
|
| 61 |
|
0m0e0 |
|
| 62 |
60 61
|
eqtrdi |
|
| 63 |
62
|
oveq2d |
|
| 64 |
|
oveq2 |
|
| 65 |
63 64
|
oveq12d |
|
| 66 |
59 65
|
oveq12d |
|
| 67 |
66
|
fsum1 |
|
| 68 |
52 54 67
|
sylancr |
|
| 69 |
|
addcl |
|
| 70 |
69
|
exp0d |
|
| 71 |
51 68 70
|
3eqtr4rd |
|
| 72 |
|
simprl |
|
| 73 |
|
simprr |
|
| 74 |
|
simpl |
|
| 75 |
|
id |
|
| 76 |
72 73 74 75
|
binomlem |
|
| 77 |
76
|
exp31 |
|
| 78 |
77
|
a2d |
|
| 79 |
11 22 33 44 71 78
|
nn0ind |
|
| 80 |
79
|
impcom |
|
| 81 |
80
|
3impa |
|