Description: Substitution for a four-place predicate. (Contributed by Scott Fenton, 9-Oct-2013) (Revised by Mario Carneiro, 14-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | br4.1 | |
|
br4.2 | |
||
br4.3 | |
||
br4.4 | |
||
br4.5 | |
||
br4.6 | |
||
Assertion | br4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br4.1 | |
|
2 | br4.2 | |
|
3 | br4.3 | |
|
4 | br4.4 | |
|
5 | br4.5 | |
|
6 | br4.6 | |
|
7 | opex | |
|
8 | opex | |
|
9 | eqeq1 | |
|
10 | 9 | 3anbi1d | |
11 | 10 | rexbidv | |
12 | 11 | 2rexbidv | |
13 | 12 | 2rexbidv | |
14 | eqeq1 | |
|
15 | 14 | 3anbi2d | |
16 | 15 | rexbidv | |
17 | 16 | 2rexbidv | |
18 | 17 | 2rexbidv | |
19 | 7 8 13 18 6 | brab | |
20 | vex | |
|
21 | vex | |
|
22 | 20 21 | opth | |
23 | 1 2 | sylan9bb | |
24 | 22 23 | sylbi | |
25 | 24 | eqcoms | |
26 | vex | |
|
27 | vex | |
|
28 | 26 27 | opth | |
29 | 3 4 | sylan9bb | |
30 | 28 29 | sylbi | |
31 | 30 | eqcoms | |
32 | 25 31 | sylan9bb | |
33 | 32 | biimp3a | |
34 | 33 | a1i | |
35 | 34 | rexlimdva | |
36 | 35 | rexlimdvva | |
37 | 36 | rexlimdvva | |
38 | simpl1 | |
|
39 | simpl2l | |
|
40 | simpl2r | |
|
41 | simpl3l | |
|
42 | simpl3r | |
|
43 | eqidd | |
|
44 | eqidd | |
|
45 | simpr | |
|
46 | opeq1 | |
|
47 | 46 | eqeq2d | |
48 | 47 3 | 3anbi23d | |
49 | opeq2 | |
|
50 | 49 | eqeq2d | |
51 | 50 4 | 3anbi23d | |
52 | 48 51 | rspc2ev | |
53 | 41 42 43 44 45 52 | syl113anc | |
54 | opeq1 | |
|
55 | 54 | eqeq2d | |
56 | 55 1 | 3anbi13d | |
57 | 56 | 2rexbidv | |
58 | opeq2 | |
|
59 | 58 | eqeq2d | |
60 | 59 2 | 3anbi13d | |
61 | 60 | 2rexbidv | |
62 | 57 61 | rspc2ev | |
63 | 39 40 53 62 | syl3anc | |
64 | 5 | rexeqdv | |
65 | 5 64 | rexeqbidv | |
66 | 5 65 | rexeqbidv | |
67 | 5 66 | rexeqbidv | |
68 | 67 | rspcev | |
69 | 38 63 68 | syl2anc | |
70 | 69 | ex | |
71 | 37 70 | impbid | |
72 | 19 71 | bitrid | |