Metamath Proof Explorer


Theorem br4

Description: Substitution for a four-place predicate. (Contributed by Scott Fenton, 9-Oct-2013) (Revised by Mario Carneiro, 14-Oct-2013)

Ref Expression
Hypotheses br4.1 a=Aφψ
br4.2 b=Bψχ
br4.3 c=Cχθ
br4.4 d=Dθτ
br4.5 x=XP=Q
br4.6 R=pq|xSaPbPcPdPp=abq=cdφ
Assertion br4 XSAQBQCQDQABRCDτ

Proof

Step Hyp Ref Expression
1 br4.1 a=Aφψ
2 br4.2 b=Bψχ
3 br4.3 c=Cχθ
4 br4.4 d=Dθτ
5 br4.5 x=XP=Q
6 br4.6 R=pq|xSaPbPcPdPp=abq=cdφ
7 opex ABV
8 opex CDV
9 eqeq1 p=ABp=abAB=ab
10 9 3anbi1d p=ABp=abq=cdφAB=abq=cdφ
11 10 rexbidv p=ABdPp=abq=cdφdPAB=abq=cdφ
12 11 2rexbidv p=ABbPcPdPp=abq=cdφbPcPdPAB=abq=cdφ
13 12 2rexbidv p=ABxSaPbPcPdPp=abq=cdφxSaPbPcPdPAB=abq=cdφ
14 eqeq1 q=CDq=cdCD=cd
15 14 3anbi2d q=CDAB=abq=cdφAB=abCD=cdφ
16 15 rexbidv q=CDdPAB=abq=cdφdPAB=abCD=cdφ
17 16 2rexbidv q=CDbPcPdPAB=abq=cdφbPcPdPAB=abCD=cdφ
18 17 2rexbidv q=CDxSaPbPcPdPAB=abq=cdφxSaPbPcPdPAB=abCD=cdφ
19 7 8 13 18 6 brab ABRCDxSaPbPcPdPAB=abCD=cdφ
20 vex aV
21 vex bV
22 20 21 opth ab=ABa=Ab=B
23 1 2 sylan9bb a=Ab=Bφχ
24 22 23 sylbi ab=ABφχ
25 24 eqcoms AB=abφχ
26 vex cV
27 vex dV
28 26 27 opth cd=CDc=Cd=D
29 3 4 sylan9bb c=Cd=Dχτ
30 28 29 sylbi cd=CDχτ
31 30 eqcoms CD=cdχτ
32 25 31 sylan9bb AB=abCD=cdφτ
33 32 biimp3a AB=abCD=cdφτ
34 33 a1i XSAQBQCQDQxSaPbPcPdPAB=abCD=cdφτ
35 34 rexlimdva XSAQBQCQDQxSaPbPcPdPAB=abCD=cdφτ
36 35 rexlimdvva XSAQBQCQDQxSaPbPcPdPAB=abCD=cdφτ
37 36 rexlimdvva XSAQBQCQDQxSaPbPcPdPAB=abCD=cdφτ
38 simpl1 XSAQBQCQDQτXS
39 simpl2l XSAQBQCQDQτAQ
40 simpl2r XSAQBQCQDQτBQ
41 simpl3l XSAQBQCQDQτCQ
42 simpl3r XSAQBQCQDQτDQ
43 eqidd XSAQBQCQDQτAB=AB
44 eqidd XSAQBQCQDQτCD=CD
45 simpr XSAQBQCQDQττ
46 opeq1 c=Ccd=Cd
47 46 eqeq2d c=CCD=cdCD=Cd
48 47 3 3anbi23d c=CAB=ABCD=cdχAB=ABCD=Cdθ
49 opeq2 d=DCd=CD
50 49 eqeq2d d=DCD=CdCD=CD
51 50 4 3anbi23d d=DAB=ABCD=CdθAB=ABCD=CDτ
52 48 51 rspc2ev CQDQAB=ABCD=CDτcQdQAB=ABCD=cdχ
53 41 42 43 44 45 52 syl113anc XSAQBQCQDQτcQdQAB=ABCD=cdχ
54 opeq1 a=Aab=Ab
55 54 eqeq2d a=AAB=abAB=Ab
56 55 1 3anbi13d a=AAB=abCD=cdφAB=AbCD=cdψ
57 56 2rexbidv a=AcQdQAB=abCD=cdφcQdQAB=AbCD=cdψ
58 opeq2 b=BAb=AB
59 58 eqeq2d b=BAB=AbAB=AB
60 59 2 3anbi13d b=BAB=AbCD=cdψAB=ABCD=cdχ
61 60 2rexbidv b=BcQdQAB=AbCD=cdψcQdQAB=ABCD=cdχ
62 57 61 rspc2ev AQBQcQdQAB=ABCD=cdχaQbQcQdQAB=abCD=cdφ
63 39 40 53 62 syl3anc XSAQBQCQDQτaQbQcQdQAB=abCD=cdφ
64 5 rexeqdv x=XdPAB=abCD=cdφdQAB=abCD=cdφ
65 5 64 rexeqbidv x=XcPdPAB=abCD=cdφcQdQAB=abCD=cdφ
66 5 65 rexeqbidv x=XbPcPdPAB=abCD=cdφbQcQdQAB=abCD=cdφ
67 5 66 rexeqbidv x=XaPbPcPdPAB=abCD=cdφaQbQcQdQAB=abCD=cdφ
68 67 rspcev XSaQbQcQdQAB=abCD=cdφxSaPbPcPdPAB=abCD=cdφ
69 38 63 68 syl2anc XSAQBQCQDQτxSaPbPcPdPAB=abCD=cdφ
70 69 ex XSAQBQCQDQτxSaPbPcPdPAB=abCD=cdφ
71 37 70 impbid XSAQBQCQDQxSaPbPcPdPAB=abCD=cdφτ
72 19 71 bitrid XSAQBQCQDQABRCDτ