Metamath Proof Explorer


Theorem br6

Description: Substitution for a six-place predicate. (Contributed by Scott Fenton, 4-Oct-2013) (Revised by Mario Carneiro, 3-May-2015)

Ref Expression
Hypotheses br6.1 a=Aφψ
br6.2 b=Bψχ
br6.3 c=Cχθ
br6.4 d=Dθτ
br6.5 e=Eτη
br6.6 f=Fηζ
br6.7 x=XP=Q
br6.8 R=pq|xSaPbPcPdPePfPp=abcq=defφ
Assertion br6 XSAQBQCQDQEQFQABCRDEFζ

Proof

Step Hyp Ref Expression
1 br6.1 a=Aφψ
2 br6.2 b=Bψχ
3 br6.3 c=Cχθ
4 br6.4 d=Dθτ
5 br6.5 e=Eτη
6 br6.6 f=Fηζ
7 br6.7 x=XP=Q
8 br6.8 R=pq|xSaPbPcPdPePfPp=abcq=defφ
9 opex ABCV
10 opex DEFV
11 eqeq1 p=ABCp=abcABC=abc
12 eqcom ABC=abcabc=ABC
13 11 12 bitrdi p=ABCp=abcabc=ABC
14 13 3anbi1d p=ABCp=abcq=defφabc=ABCq=defφ
15 14 rexbidv p=ABCfPp=abcq=defφfPabc=ABCq=defφ
16 15 2rexbidv p=ABCdPePfPp=abcq=defφdPePfPabc=ABCq=defφ
17 16 2rexbidv p=ABCbPcPdPePfPp=abcq=defφbPcPdPePfPabc=ABCq=defφ
18 17 2rexbidv p=ABCxSaPbPcPdPePfPp=abcq=defφxSaPbPcPdPePfPabc=ABCq=defφ
19 eqeq1 q=DEFq=defDEF=def
20 eqcom DEF=defdef=DEF
21 19 20 bitrdi q=DEFq=defdef=DEF
22 21 3anbi2d q=DEFabc=ABCq=defφabc=ABCdef=DEFφ
23 22 rexbidv q=DEFfPabc=ABCq=defφfPabc=ABCdef=DEFφ
24 23 2rexbidv q=DEFdPePfPabc=ABCq=defφdPePfPabc=ABCdef=DEFφ
25 24 2rexbidv q=DEFbPcPdPePfPabc=ABCq=defφbPcPdPePfPabc=ABCdef=DEFφ
26 25 2rexbidv q=DEFxSaPbPcPdPePfPabc=ABCq=defφxSaPbPcPdPePfPabc=ABCdef=DEFφ
27 9 10 18 26 8 brab ABCRDEFxSaPbPcPdPePfPabc=ABCdef=DEFφ
28 vex aV
29 opex bcV
30 28 29 opth abc=ABCa=Abc=BC
31 vex bV
32 vex cV
33 31 32 opth bc=BCb=Bc=C
34 2 3 sylan9bb b=Bc=Cψθ
35 33 34 sylbi bc=BCψθ
36 1 35 sylan9bb a=Abc=BCφθ
37 30 36 sylbi abc=ABCφθ
38 vex dV
39 opex efV
40 38 39 opth def=DEFd=Def=EF
41 vex eV
42 vex fV
43 41 42 opth ef=EFe=Ef=F
44 5 6 sylan9bb e=Ef=Fτζ
45 43 44 sylbi ef=EFτζ
46 4 45 sylan9bb d=Def=EFθζ
47 40 46 sylbi def=DEFθζ
48 37 47 sylan9bb abc=ABCdef=DEFφζ
49 48 biimp3a abc=ABCdef=DEFφζ
50 49 a1i XSAQBQCQDQEQFQxSaPbPcPdPePfPabc=ABCdef=DEFφζ
51 50 rexlimdva XSAQBQCQDQEQFQxSaPbPcPdPePfPabc=ABCdef=DEFφζ
52 51 rexlimdvva XSAQBQCQDQEQFQxSaPbPcPdPePfPabc=ABCdef=DEFφζ
53 52 rexlimdvva XSAQBQCQDQEQFQxSaPbPcPdPePfPabc=ABCdef=DEFφζ
54 53 rexlimdvva XSAQBQCQDQEQFQxSaPbPcPdPePfPabc=ABCdef=DEFφζ
55 simpl1 XSAQBQCQDQEQFQζXS
56 simpl2 XSAQBQCQDQEQFQζAQBQCQ
57 opeq1 d=Ddef=Def
58 57 eqeq1d d=Ddef=DEFDef=DEF
59 58 4 3anbi23d d=DABC=ABCdef=DEFθABC=ABCDef=DEFτ
60 opeq1 e=Eef=Ef
61 60 opeq2d e=EDef=DEf
62 61 eqeq1d e=EDef=DEFDEf=DEF
63 62 5 3anbi23d e=EABC=ABCDef=DEFτABC=ABCDEf=DEFη
64 opeq2 f=FEf=EF
65 64 opeq2d f=FDEf=DEF
66 65 eqeq1d f=FDEf=DEFDEF=DEF
67 66 6 3anbi23d f=FABC=ABCDEf=DEFηABC=ABCDEF=DEFζ
68 eqid ABC=ABC
69 eqid DEF=DEF
70 68 69 pm3.2i ABC=ABCDEF=DEF
71 df-3an ABC=ABCDEF=DEFζABC=ABCDEF=DEFζ
72 70 71 mpbiran ABC=ABCDEF=DEFζζ
73 67 72 bitrdi f=FABC=ABCDEf=DEFηζ
74 59 63 73 rspc3ev DQEQFQζdQeQfQABC=ABCdef=DEFθ
75 74 3ad2antl3 XSAQBQCQDQEQFQζdQeQfQABC=ABCdef=DEFθ
76 opeq1 a=Aabc=Abc
77 76 eqeq1d a=Aabc=ABCAbc=ABC
78 77 1 3anbi13d a=Aabc=ABCdef=DEFφAbc=ABCdef=DEFψ
79 78 rexbidv a=AfQabc=ABCdef=DEFφfQAbc=ABCdef=DEFψ
80 79 2rexbidv a=AdQeQfQabc=ABCdef=DEFφdQeQfQAbc=ABCdef=DEFψ
81 opeq1 b=Bbc=Bc
82 81 opeq2d b=BAbc=ABc
83 82 eqeq1d b=BAbc=ABCABc=ABC
84 83 2 3anbi13d b=BAbc=ABCdef=DEFψABc=ABCdef=DEFχ
85 84 rexbidv b=BfQAbc=ABCdef=DEFψfQABc=ABCdef=DEFχ
86 85 2rexbidv b=BdQeQfQAbc=ABCdef=DEFψdQeQfQABc=ABCdef=DEFχ
87 opeq2 c=CBc=BC
88 87 opeq2d c=CABc=ABC
89 88 eqeq1d c=CABc=ABCABC=ABC
90 89 3 3anbi13d c=CABc=ABCdef=DEFχABC=ABCdef=DEFθ
91 90 rexbidv c=CfQABc=ABCdef=DEFχfQABC=ABCdef=DEFθ
92 91 2rexbidv c=CdQeQfQABc=ABCdef=DEFχdQeQfQABC=ABCdef=DEFθ
93 80 86 92 rspc3ev AQBQCQdQeQfQABC=ABCdef=DEFθaQbQcQdQeQfQabc=ABCdef=DEFφ
94 56 75 93 syl2anc XSAQBQCQDQEQFQζaQbQcQdQeQfQabc=ABCdef=DEFφ
95 7 rexeqdv x=XfPabc=ABCdef=DEFφfQabc=ABCdef=DEFφ
96 7 95 rexeqbidv x=XePfPabc=ABCdef=DEFφeQfQabc=ABCdef=DEFφ
97 7 96 rexeqbidv x=XdPePfPabc=ABCdef=DEFφdQeQfQabc=ABCdef=DEFφ
98 7 97 rexeqbidv x=XcPdPePfPabc=ABCdef=DEFφcQdQeQfQabc=ABCdef=DEFφ
99 7 98 rexeqbidv x=XbPcPdPePfPabc=ABCdef=DEFφbQcQdQeQfQabc=ABCdef=DEFφ
100 7 99 rexeqbidv x=XaPbPcPdPePfPabc=ABCdef=DEFφaQbQcQdQeQfQabc=ABCdef=DEFφ
101 100 rspcev XSaQbQcQdQeQfQabc=ABCdef=DEFφxSaPbPcPdPePfPabc=ABCdef=DEFφ
102 55 94 101 syl2anc XSAQBQCQDQEQFQζxSaPbPcPdPePfPabc=ABCdef=DEFφ
103 102 ex XSAQBQCQDQEQFQζxSaPbPcPdPePfPabc=ABCdef=DEFφ
104 54 103 impbid XSAQBQCQDQEQFQxSaPbPcPdPePfPabc=ABCdef=DEFφζ
105 27 104 bitrid XSAQBQCQDQEQFQABCRDEFζ