Metamath Proof Explorer


Theorem braew

Description: 'almost everywhere' relation for a measure M and a property ph (Contributed by Thierry Arnoux, 20-Oct-2017)

Ref Expression
Hypothesis braew.1 domM=O
Assertion braew MranmeasuresxO|φM-ae.MxO|¬φ=0

Proof

Step Hyp Ref Expression
1 braew.1 domM=O
2 dmexg MranmeasuresdomMV
3 2 uniexd MranmeasuresdomMV
4 1 3 eqeltrrid MranmeasuresOV
5 rabexg OVxO|φV
6 4 5 syl MranmeasuresxO|φV
7 simpr a=xO|φm=Mm=M
8 7 dmeqd a=xO|φm=Mdomm=domM
9 8 unieqd a=xO|φm=Mdomm=domM
10 simpl a=xO|φm=Ma=xO|φ
11 9 10 difeq12d a=xO|φm=Mdomma=domMxO|φ
12 7 11 fveq12d a=xO|φm=Mmdomma=MdomMxO|φ
13 12 eqeq1d a=xO|φm=Mmdomma=0MdomMxO|φ=0
14 df-ae ae=am|mdomma=0
15 13 14 brabga xO|φVMranmeasuresxO|φM-ae.MdomMxO|φ=0
16 6 15 mpancom MranmeasuresxO|φM-ae.MdomMxO|φ=0
17 1 difeq1i domMxO|φ=OxO|φ
18 notrab OxO|φ=xO|¬φ
19 17 18 eqtri domMxO|φ=xO|¬φ
20 19 fveq2i MdomMxO|φ=MxO|¬φ
21 20 eqeq1i MdomMxO|φ=0MxO|¬φ=0
22 16 21 bitrdi MranmeasuresxO|φM-ae.MxO|¬φ=0