Metamath Proof Explorer


Theorem brbigcup

Description: Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Hypothesis brbigcup.1 B V
Assertion brbigcup A 𝖡𝗂𝗀𝖼𝗎𝗉 B A = B

Proof

Step Hyp Ref Expression
1 brbigcup.1 B V
2 relbigcup Rel 𝖡𝗂𝗀𝖼𝗎𝗉
3 2 brrelex1i A 𝖡𝗂𝗀𝖼𝗎𝗉 B A V
4 eleq1 A = B A V B V
5 1 4 mpbiri A = B A V
6 uniexb A V A V
7 5 6 sylibr A = B A V
8 breq1 x = A x 𝖡𝗂𝗀𝖼𝗎𝗉 B A 𝖡𝗂𝗀𝖼𝗎𝗉 B
9 unieq x = A x = A
10 9 eqeq1d x = A x = B A = B
11 vex x V
12 df-bigcup 𝖡𝗂𝗀𝖼𝗎𝗉 = V × V ran V E E E V
13 brxp x V × V B x V B V
14 11 1 13 mpbir2an x V × V B
15 epel y E z y z
16 15 rexbii z x y E z z x y z
17 vex y V
18 17 11 coep y E E x z x y E z
19 eluni2 y x z x y z
20 16 18 19 3bitr4ri y x y E E x
21 11 1 12 14 20 brtxpsd3 x 𝖡𝗂𝗀𝖼𝗎𝗉 B B = x
22 eqcom B = x x = B
23 21 22 bitri x 𝖡𝗂𝗀𝖼𝗎𝗉 B x = B
24 8 10 23 vtoclbg A V A 𝖡𝗂𝗀𝖼𝗎𝗉 B A = B
25 3 7 24 pm5.21nii A 𝖡𝗂𝗀𝖼𝗎𝗉 B A = B