Description: An equivalence to a dominance relation. (Contributed by NM, 28-Mar-2007) (Revised by NM, 16-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | brdom3.2 | |
|
Assertion | brdom4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdom3.2 | |
|
2 | 1 | brdom3 | |
3 | mormo | |
|
4 | 3 | alimi | |
5 | alral | |
|
6 | 4 5 | syl | |
7 | 6 | anim1i | |
8 | 7 | eximi | |
9 | 2 8 | sylbi | |
10 | inss2 | |
|
11 | dmss | |
|
12 | 10 11 | ax-mp | |
13 | dmxpss | |
|
14 | 12 13 | sstri | |
15 | 14 | sseli | |
16 | 10 | rnssi | |
17 | rnxpss | |
|
18 | 16 17 | sstri | |
19 | 18 | sseli | |
20 | inss1 | |
|
21 | 20 | ssbri | |
22 | 19 21 | anim12i | |
23 | 22 | moimi | |
24 | df-rmo | |
|
25 | df-rmo | |
|
26 | 23 24 25 | 3imtr4i | |
27 | 15 26 | imim12i | |
28 | 27 | ralimi2 | |
29 | relinxp | |
|
30 | 28 29 | jctil | |
31 | dffun9 | |
|
32 | 30 31 | sylibr | |
33 | 32 | funfnd | |
34 | rninxp | |
|
35 | 34 | biimpri | |
36 | 33 35 | anim12i | |
37 | df-fo | |
|
38 | 36 37 | sylibr | |
39 | vex | |
|
40 | 39 | inex1 | |
41 | 40 | dmex | |
42 | 41 | fodom | |
43 | 38 42 | syl | |
44 | ssdomg | |
|
45 | 1 14 44 | mp2 | |
46 | domtr | |
|
47 | 43 45 46 | sylancl | |
48 | 47 | exlimiv | |
49 | 9 48 | impbii | |