Metamath Proof Explorer


Theorem brdom4

Description: An equivalence to a dominance relation. (Contributed by NM, 28-Mar-2007) (Revised by NM, 16-Jun-2017)

Ref Expression
Hypothesis brdom3.2 BV
Assertion brdom4 ABfxB*yAxfyxAyByfx

Proof

Step Hyp Ref Expression
1 brdom3.2 BV
2 1 brdom3 ABfx*yxfyxAyByfx
3 mormo *yxfy*yAxfy
4 3 alimi x*yxfyx*yAxfy
5 alral x*yAxfyxB*yAxfy
6 4 5 syl x*yxfyxB*yAxfy
7 6 anim1i x*yxfyxAyByfxxB*yAxfyxAyByfx
8 7 eximi fx*yxfyxAyByfxfxB*yAxfyxAyByfx
9 2 8 sylbi ABfxB*yAxfyxAyByfx
10 inss2 fB×AB×A
11 dmss fB×AB×AdomfB×AdomB×A
12 10 11 ax-mp domfB×AdomB×A
13 dmxpss domB×AB
14 12 13 sstri domfB×AB
15 14 sseli xdomfB×AxB
16 10 rnssi ranfB×AranB×A
17 rnxpss ranB×AA
18 16 17 sstri ranfB×AA
19 18 sseli yranfB×AyA
20 inss1 fB×Af
21 20 ssbri xfB×Ayxfy
22 19 21 anim12i yranfB×AxfB×AyyAxfy
23 22 moimi *yyAxfy*yyranfB×AxfB×Ay
24 df-rmo *yAxfy*yyAxfy
25 df-rmo *yranfB×AxfB×Ay*yyranfB×AxfB×Ay
26 23 24 25 3imtr4i *yAxfy*yranfB×AxfB×Ay
27 15 26 imim12i xB*yAxfyxdomfB×A*yranfB×AxfB×Ay
28 27 ralimi2 xB*yAxfyxdomfB×A*yranfB×AxfB×Ay
29 relinxp RelfB×A
30 28 29 jctil xB*yAxfyRelfB×AxdomfB×A*yranfB×AxfB×Ay
31 dffun9 FunfB×ARelfB×AxdomfB×A*yranfB×AxfB×Ay
32 30 31 sylibr xB*yAxfyFunfB×A
33 32 funfnd xB*yAxfyfB×AFndomfB×A
34 rninxp ranfB×A=AxAyByfx
35 34 biimpri xAyByfxranfB×A=A
36 33 35 anim12i xB*yAxfyxAyByfxfB×AFndomfB×AranfB×A=A
37 df-fo fB×A:domfB×AontoAfB×AFndomfB×AranfB×A=A
38 36 37 sylibr xB*yAxfyxAyByfxfB×A:domfB×AontoA
39 vex fV
40 39 inex1 fB×AV
41 40 dmex domfB×AV
42 41 fodom fB×A:domfB×AontoAAdomfB×A
43 38 42 syl xB*yAxfyxAyByfxAdomfB×A
44 ssdomg BVdomfB×ABdomfB×AB
45 1 14 44 mp2 domfB×AB
46 domtr AdomfB×AdomfB×ABAB
47 43 45 46 sylancl xB*yAxfyxAyByfxAB
48 47 exlimiv fxB*yAxfyxAyByfxAB
49 9 48 impbii ABfxB*yAxfyxAyByfx