Metamath Proof Explorer


Theorem brifs

Description: Binary relation form of the inner five segment predicate. (Contributed by Scott Fenton, 26-Sep-2013)

Ref Expression
Assertion brifs N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D InnerFiveSeg E F G H B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H

Proof

Step Hyp Ref Expression
1 opeq1 a = A a c = A c
2 1 breq2d a = A b Btwn a c b Btwn A c
3 2 anbi1d a = A b Btwn a c f Btwn e g b Btwn A c f Btwn e g
4 1 breq1d a = A a c Cgr e g A c Cgr e g
5 4 anbi1d a = A a c Cgr e g b c Cgr f g A c Cgr e g b c Cgr f g
6 opeq1 a = A a d = A d
7 6 breq1d a = A a d Cgr e h A d Cgr e h
8 7 anbi1d a = A a d Cgr e h c d Cgr g h A d Cgr e h c d Cgr g h
9 3 5 8 3anbi123d a = A b Btwn a c f Btwn e g a c Cgr e g b c Cgr f g a d Cgr e h c d Cgr g h b Btwn A c f Btwn e g A c Cgr e g b c Cgr f g A d Cgr e h c d Cgr g h
10 breq1 b = B b Btwn A c B Btwn A c
11 10 anbi1d b = B b Btwn A c f Btwn e g B Btwn A c f Btwn e g
12 opeq1 b = B b c = B c
13 12 breq1d b = B b c Cgr f g B c Cgr f g
14 13 anbi2d b = B A c Cgr e g b c Cgr f g A c Cgr e g B c Cgr f g
15 11 14 3anbi12d b = B b Btwn A c f Btwn e g A c Cgr e g b c Cgr f g A d Cgr e h c d Cgr g h B Btwn A c f Btwn e g A c Cgr e g B c Cgr f g A d Cgr e h c d Cgr g h
16 opeq2 c = C A c = A C
17 16 breq2d c = C B Btwn A c B Btwn A C
18 17 anbi1d c = C B Btwn A c f Btwn e g B Btwn A C f Btwn e g
19 16 breq1d c = C A c Cgr e g A C Cgr e g
20 opeq2 c = C B c = B C
21 20 breq1d c = C B c Cgr f g B C Cgr f g
22 19 21 anbi12d c = C A c Cgr e g B c Cgr f g A C Cgr e g B C Cgr f g
23 opeq1 c = C c d = C d
24 23 breq1d c = C c d Cgr g h C d Cgr g h
25 24 anbi2d c = C A d Cgr e h c d Cgr g h A d Cgr e h C d Cgr g h
26 18 22 25 3anbi123d c = C B Btwn A c f Btwn e g A c Cgr e g B c Cgr f g A d Cgr e h c d Cgr g h B Btwn A C f Btwn e g A C Cgr e g B C Cgr f g A d Cgr e h C d Cgr g h
27 opeq2 d = D A d = A D
28 27 breq1d d = D A d Cgr e h A D Cgr e h
29 opeq2 d = D C d = C D
30 29 breq1d d = D C d Cgr g h C D Cgr g h
31 28 30 anbi12d d = D A d Cgr e h C d Cgr g h A D Cgr e h C D Cgr g h
32 31 3anbi3d d = D B Btwn A C f Btwn e g A C Cgr e g B C Cgr f g A d Cgr e h C d Cgr g h B Btwn A C f Btwn e g A C Cgr e g B C Cgr f g A D Cgr e h C D Cgr g h
33 opeq1 e = E e g = E g
34 33 breq2d e = E f Btwn e g f Btwn E g
35 34 anbi2d e = E B Btwn A C f Btwn e g B Btwn A C f Btwn E g
36 33 breq2d e = E A C Cgr e g A C Cgr E g
37 36 anbi1d e = E A C Cgr e g B C Cgr f g A C Cgr E g B C Cgr f g
38 opeq1 e = E e h = E h
39 38 breq2d e = E A D Cgr e h A D Cgr E h
40 39 anbi1d e = E A D Cgr e h C D Cgr g h A D Cgr E h C D Cgr g h
41 35 37 40 3anbi123d e = E B Btwn A C f Btwn e g A C Cgr e g B C Cgr f g A D Cgr e h C D Cgr g h B Btwn A C f Btwn E g A C Cgr E g B C Cgr f g A D Cgr E h C D Cgr g h
42 breq1 f = F f Btwn E g F Btwn E g
43 42 anbi2d f = F B Btwn A C f Btwn E g B Btwn A C F Btwn E g
44 opeq1 f = F f g = F g
45 44 breq2d f = F B C Cgr f g B C Cgr F g
46 45 anbi2d f = F A C Cgr E g B C Cgr f g A C Cgr E g B C Cgr F g
47 43 46 3anbi12d f = F B Btwn A C f Btwn E g A C Cgr E g B C Cgr f g A D Cgr E h C D Cgr g h B Btwn A C F Btwn E g A C Cgr E g B C Cgr F g A D Cgr E h C D Cgr g h
48 opeq2 g = G E g = E G
49 48 breq2d g = G F Btwn E g F Btwn E G
50 49 anbi2d g = G B Btwn A C F Btwn E g B Btwn A C F Btwn E G
51 48 breq2d g = G A C Cgr E g A C Cgr E G
52 opeq2 g = G F g = F G
53 52 breq2d g = G B C Cgr F g B C Cgr F G
54 51 53 anbi12d g = G A C Cgr E g B C Cgr F g A C Cgr E G B C Cgr F G
55 opeq1 g = G g h = G h
56 55 breq2d g = G C D Cgr g h C D Cgr G h
57 56 anbi2d g = G A D Cgr E h C D Cgr g h A D Cgr E h C D Cgr G h
58 50 54 57 3anbi123d g = G B Btwn A C F Btwn E g A C Cgr E g B C Cgr F g A D Cgr E h C D Cgr g h B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E h C D Cgr G h
59 opeq2 h = H E h = E H
60 59 breq2d h = H A D Cgr E h A D Cgr E H
61 opeq2 h = H G h = G H
62 61 breq2d h = H C D Cgr G h C D Cgr G H
63 60 62 anbi12d h = H A D Cgr E h C D Cgr G h A D Cgr E H C D Cgr G H
64 63 3anbi3d h = H B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E h C D Cgr G h B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H
65 fveq2 n = N 𝔼 n = 𝔼 N
66 df-ifs InnerFiveSeg = p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n e 𝔼 n f 𝔼 n g 𝔼 n h 𝔼 n p = a b c d q = e f g h b Btwn a c f Btwn e g a c Cgr e g b c Cgr f g a d Cgr e h c d Cgr g h
67 9 15 26 32 41 47 58 64 65 66 br8 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D InnerFiveSeg E F G H B Btwn A C F Btwn E G A C Cgr E G B C Cgr F G A D Cgr E H C D Cgr G H