Metamath Proof Explorer


Theorem btwnconn1lem2

Description: Lemma for btwnconn1 . Now, we show that two of the hypotheticals we introduced in the first lemma are identical. (Contributed by Scott Fenton, 8-Oct-2013)

Ref Expression
Assertion btwnconn1lem2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B X = b

Proof

Step Hyp Ref Expression
1 simp1ll A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B A B
2 1 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B A B
3 simp11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N N
4 simp12 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A 𝔼 N
5 simp13 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N B 𝔼 N
6 simp21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N C 𝔼 N
7 simp33 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N X 𝔼 N
8 simp1rl A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B B Btwn A C
9 8 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B B Btwn A C
10 simp2rl A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B C Btwn A d
11 simp3rl A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B d Btwn A X
12 10 11 jca A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B C Btwn A d d Btwn A X
13 12 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B C Btwn A d d Btwn A X
14 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N d 𝔼 N
15 btwnexch N A 𝔼 N C 𝔼 N d 𝔼 N X 𝔼 N C Btwn A d d Btwn A X C Btwn A X
16 3 4 6 14 7 15 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N C Btwn A d d Btwn A X C Btwn A X
17 16 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B C Btwn A d d Btwn A X C Btwn A X
18 13 17 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B C Btwn A X
19 3 4 5 6 7 9 18 btwnexchand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B B Btwn A X
20 3 5 7 cgrrflx2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N B X Cgr X B
21 20 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B B X Cgr X B
22 19 21 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B B Btwn A X B X Cgr X B
23 simp23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N c 𝔼 N
24 simp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N b 𝔼 N
25 simp1rr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B B Btwn A D
26 simp2ll A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B D Btwn A c
27 25 26 jca A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B B Btwn A D D Btwn A c
28 27 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B B Btwn A D D Btwn A c
29 simp22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N D 𝔼 N
30 btwnexch N A 𝔼 N B 𝔼 N D 𝔼 N c 𝔼 N B Btwn A D D Btwn A c B Btwn A c
31 3 4 5 29 23 30 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N B Btwn A D D Btwn A c B Btwn A c
32 31 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B B Btwn A D D Btwn A c B Btwn A c
33 28 32 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B B Btwn A c
34 simp3ll A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B c Btwn A b
35 34 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B c Btwn A b
36 3 4 5 23 24 33 35 btwnexchand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B B Btwn A b
37 3 4 5 23 24 33 35 btwnexch3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B c Btwn B b
38 3 4 5 6 7 9 18 btwnexch3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B C Btwn B X
39 3 6 5 7 38 btwncomand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B C Btwn X B
40 btwnconn1lem1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B B c Cgr X C
41 simp3lr A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B c b Cgr C B
42 41 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B c b Cgr C B
43 3 5 23 24 7 6 5 37 39 40 42 cgrextendand N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B B b Cgr X B
44 36 43 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B B Btwn A b B b Cgr X B
45 segconeq N B 𝔼 N X 𝔼 N B 𝔼 N A 𝔼 N X 𝔼 N b 𝔼 N A B B Btwn A X B X Cgr X B B Btwn A b B b Cgr X B X = b
46 3 5 7 5 4 7 24 45 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B Btwn A X B X Cgr X B B Btwn A b B b Cgr X B X = b
47 46 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B A B B Btwn A X B X Cgr X B B Btwn A b B b Cgr X B X = b
48 2 22 44 47 mp3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N c 𝔼 N d 𝔼 N b 𝔼 N X 𝔼 N A B B C B Btwn A C B Btwn A D D Btwn A c D c Cgr C D C Btwn A d C d Cgr C D c Btwn A b c b Cgr C B d Btwn A X d X Cgr D B X = b