Metamath Proof Explorer


Theorem canth

Description: No set A is equinumerous to its power set (Cantor's theorem), i.e., no function can map A onto its power set. Compare Theorem 6B(b) of Enderton p. 132. For the equinumerosity version, see canth2 . Note that A must be a set: this theorem does not hold when A is too large to be a set; see ncanth for a counterexample. (Use nex if you want the form -. E. f f : A -onto-> ~P A .) (Contributed by NM, 7-Aug-1994) (Proof shortened by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypothesis canth.1 AV
Assertion canth ¬F:Aonto𝒫A

Proof

Step Hyp Ref Expression
1 canth.1 AV
2 ssrab2 xA|¬xFxA
3 1 2 elpwi2 xA|¬xFx𝒫A
4 forn F:Aonto𝒫AranF=𝒫A
5 3 4 eleqtrrid F:Aonto𝒫AxA|¬xFxranF
6 id x=yx=y
7 fveq2 x=yFx=Fy
8 6 7 eleq12d x=yxFxyFy
9 8 notbid x=y¬xFx¬yFy
10 9 elrab yxA|¬xFxyA¬yFy
11 10 baibr yA¬yFyyxA|¬xFx
12 nbbn ¬yFyyxA|¬xFx¬yFyyxA|¬xFx
13 11 12 sylib yA¬yFyyxA|¬xFx
14 eleq2 Fy=xA|¬xFxyFyyxA|¬xFx
15 13 14 nsyl yA¬Fy=xA|¬xFx
16 15 nrex ¬yAFy=xA|¬xFx
17 fofn F:Aonto𝒫AFFnA
18 fvelrnb FFnAxA|¬xFxranFyAFy=xA|¬xFx
19 17 18 syl F:Aonto𝒫AxA|¬xFxranFyAFy=xA|¬xFx
20 16 19 mtbiri F:Aonto𝒫A¬xA|¬xFxranF
21 5 20 pm2.65i ¬F:Aonto𝒫A